".github/vscode:/vscode.git/clone" did not exist on "200d3b1608c2f987b8e5f7a2e9b3b7f8af6b78ea"
weighting.cpp 4.23 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
#include <Python.h>
#include <torch/script.h>

#include "cpu/weighting_cpu.h"

#ifdef WITH_CUDA
#include "cuda/weighting_cuda.h"
#endif

#ifdef _WIN32
rusty1s's avatar
rusty1s committed
11
12
13
14
15
#ifdef WITH_CUDA
PyMODINIT_FUNC PyInit__weighting_cuda(void) { return NULL; }
#else
PyMODINIT_FUNC PyInit__weighting_cpu(void) { return NULL; }
#endif
rusty1s's avatar
rusty1s committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
#endif

torch::Tensor spline_weighting_fw(torch::Tensor x, torch::Tensor weight,
                                  torch::Tensor basis,
                                  torch::Tensor weight_index) {
  if (x.device().is_cuda()) {
#ifdef WITH_CUDA
    return spline_weighting_fw_cuda(x, weight, basis, weight_index);
#else
    AT_ERROR("Not compiled with CUDA support");
#endif
  } else {
    return spline_weighting_fw_cpu(x, weight, basis, weight_index);
  }
}

torch::Tensor spline_weighting_bw_x(torch::Tensor grad_out,
                                    torch::Tensor weight, torch::Tensor basis,
                                    torch::Tensor weight_index) {
  if (grad_out.device().is_cuda()) {
#ifdef WITH_CUDA
    return spline_weighting_bw_x_cuda(grad_out, weight, basis, weight_index);
#else
    AT_ERROR("Not compiled with CUDA support");
#endif
  } else {
    return spline_weighting_bw_x_cpu(grad_out, weight, basis, weight_index);
  }
}

torch::Tensor spline_weighting_bw_weight(torch::Tensor grad_out,
                                         torch::Tensor x, torch::Tensor basis,
                                         torch::Tensor weight_index,
                                         int64_t kernel_size) {
  if (grad_out.device().is_cuda()) {
#ifdef WITH_CUDA
    return spline_weighting_bw_weight_cuda(grad_out, x, basis, weight_index,
                                           kernel_size);
#else
    AT_ERROR("Not compiled with CUDA support");
#endif
  } else {
    return spline_weighting_bw_weight_cpu(grad_out, x, basis, weight_index,
                                          kernel_size);
  }
}

torch::Tensor spline_weighting_bw_basis(torch::Tensor grad_out, torch::Tensor x,
                                        torch::Tensor weight,
                                        torch::Tensor weight_index) {
  if (grad_out.device().is_cuda()) {
#ifdef WITH_CUDA
    return spline_weighting_bw_basis_cuda(grad_out, x, weight, weight_index);
#else
    AT_ERROR("Not compiled with CUDA support");
#endif
  } else {
    return spline_weighting_bw_basis_cpu(grad_out, x, weight, weight_index);
  }
}

using torch::autograd::AutogradContext;
using torch::autograd::Variable;
using torch::autograd::variable_list;

class SplineWeighting : public torch::autograd::Function<SplineWeighting> {
public:
  static variable_list forward(AutogradContext *ctx, Variable x,
                               Variable weight, Variable basis,
                               Variable weight_index) {
    auto out = spline_weighting_fw(x, weight, basis, weight_index);
    ctx->save_for_backward({x, weight, basis, weight_index});
    return {out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto x = saved[0], weight = saved[1], basis = saved[2],
         weight_index = saved[3];

    auto grad_x = Variable();
    if (torch::autograd::any_variable_requires_grad({x})) {
      grad_x = spline_weighting_bw_x(grad_out, weight, basis, weight_index);
    }

    auto grad_weight = Variable();
    if (torch::autograd::any_variable_requires_grad({weight})) {
      grad_weight = spline_weighting_bw_weight(grad_out, x, basis, weight_index,
                                               weight.size(0));
    }

    auto grad_basis = Variable();
    if (torch::autograd::any_variable_requires_grad({basis})) {
      grad_basis = spline_weighting_bw_basis(grad_out, x, weight, weight_index);
    }

    return {grad_x, grad_weight, grad_basis, Variable()};
  }
};

torch::Tensor spline_weighting(torch::Tensor x, torch::Tensor weight,
                               torch::Tensor basis,
                               torch::Tensor weight_index) {
rusty1s's avatar
rusty1s committed
120
121
  x = x.contiguous();
  weight = weight.contiguous();
rusty1s's avatar
rusty1s committed
122
  return SplineWeighting::apply(x, weight, basis, weight_index)[0];
rusty1s's avatar
rusty1s committed
123
124
125
126
}

static auto registry = torch::RegisterOperators().op(
    "torch_spline_conv::spline_weighting", &spline_weighting);