Commit d7ffc484 authored by limm's avatar limm
Browse files

add README.md

parent 957d38df
[pypi-image]: https://badge.fury.io/py/torch-sparse.svg # <div aligh="center"><strong>PyTorch Sparse</strong></div>
[pypi-url]: https://pypi.python.org/pypi/torch-sparse ## 简介
[testing-image]: https://github.com/rusty1s/pytorch_sparse/actions/workflows/testing.yml/badge.svg Pytorch Sparce 是 SplineCNN 的基于样条的卷积算子
[testing-url]: https://github.com/rusty1s/pytorch_sparse/actions/workflows/testing.yml
[linting-image]: https://github.com/rusty1s/pytorch_sparse/actions/workflows/linting.yml/badge.svg ### 使用pip方式安装
[linting-url]: https://github.com/rusty1s/pytorch_sparse/actions/workflows/linting.yml torch-sparce whl包下载目录:[http://10.6.10.68:8000/customized/torch-sparse/dtk2310/](http://10.6.10.68:8000/customized/torch-sparse/dtk2310/). 目前只提供有python3.8版本的安装包
[coverage-image]: https://codecov.io/gh/rusty1s/pytorch_sparse/branch/master/graph/badge.svg ```shell
[coverage-url]: https://codecov.io/github/rusty1s/pytorch_sparse?branch=master pip install torch_sparse* (下载的torch_sparse的whl包)
```
# PyTorch Sparse ### 使用源码编译方式安装
[![PyPI Version][pypi-image]][pypi-url] #### 编译环境准备
[![Testing Status][testing-image]][testing-url] - 安装相关依赖
[![Linting Status][linting-image]][linting-url] ```shell
[![Code Coverage][coverage-image]][coverage-url] pip install numpy
pip install 'urllib3==1.26.14'
-------------------------------------------------------------------------------- pip install pytest
pip insta;; wheel
This package consists of a small extension library of optimized sparse matrix operations with autograd support. ```
This package currently consists of the following methods: - 在首页 | 光合开发者社区下载 det23.10 解压在 /opt/ 路径下,并建立软连接,例如:
```shell
* **[Coalesce](#coalesce)** cd /opt
* **[Transpose](#transpose)** wget http://10.6.10.68:8000/dtk-release/dtk23.10/CentOS7.6/DTK-23.10-CentOS7.6-x86_64.tar.gz
* **[Sparse Dense Matrix Multiplication](#sparse-dense-matrix-multiplication)** tar -zxvf DTK-23.10-CentOS7.6-x86_64.tar.gz
* **[Sparse Sparse Matrix Multiplication](#sparse-sparse-matrix-multiplication)** ln -s dtk-23.10 dtk
source /opt/dtk/env.sh
All included operations work on varying data types and are implemented both for CPU and GPU. ```
To avoid the hazzle of creating [`torch.sparse_coo_tensor`](https://pytorch.org/docs/stable/torch.html?highlight=sparse_coo_tensor#torch.sparse_coo_tensor), this package defines operations on sparse tensors by simply passing `index` and `value` tensors as arguments ([with same shapes as defined in PyTorch](https://pytorch.org/docs/stable/sparse.html)).
Note that only `value` comes with autograd support, as `index` is discrete and therefore not differentiable. - 安装pytorch. pytorch whl包下载目录: [http://10.6.10.68:8000/debug/pytorch/dtk23.10/hipify](http://10.6.10.68:8000/debug/pytorch/dtk23.10/hipify). 根据需求下载对应的版本,安装如下:
```shell
## Installation pip install torch* (下载的torch的whl包)
```
### Anaconda #### 源码下载编译安装
```shell
**Update:** You can now install `pytorch-sparse` via [Anaconda](https://anaconda.org/pyg/pytorch-sparse) for all major OS/PyTorch/CUDA combinations 🤗 git clone -b 0.6.15-release http://developer.hpccube.com/codes/aicomponent/torch-sparce.git
Given that you have [`pytorch >= 1.8.0` installed](https://pytorch.org/get-started/locally/), simply run python pymap_script.py /path/to/torch-sparce
cd torch-sparce
``` python setup.py bdist_wheel
conda install pytorch-sparse -c pyg pip install dist/*.whl
``` ```
#### Note: Conda packages are not published for PyTorch 1.12 yet
### Binaries ## 单侧
```shell
We alternatively provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl). cd torch-sparce
pytest
#### PyTorch 1.12
To install the binaries for PyTorch 1.12.0, simply run
```
pip install torch-scatter torch-sparse -f https://data.pyg.org/whl/torch-1.12.0+${CUDA}.html
```
where `${CUDA}` should be replaced by either `cpu`, `cu102`, `cu113`, or `cu116` depending on your PyTorch installation.
| | `cpu` | `cu102` | `cu113` | `cu116` |
|-------------|-------|---------|---------|---------|
| **Linux** | ✅ | ✅ | ✅ | ✅ |
| **Windows** | ✅ | | ✅ | ✅ |
| **macOS** | ✅ | | | |
#### PyTorch 1.11
To install the binaries for PyTorch 1.11.0, simply run
```
pip install torch-scatter torch-sparse -f https://data.pyg.org/whl/torch-1.11.0+${CUDA}.html
```
where `${CUDA}` should be replaced by either `cpu`, `cu102`, `cu113`, or `cu115` depending on your PyTorch installation.
| | `cpu` | `cu102` | `cu113` | `cu115` |
|-------------|-------|---------|---------|---------|
| **Linux** | ✅ | ✅ | ✅ | ✅ |
| **Windows** | ✅ | | ✅ | ✅ |
| **macOS** | ✅ | | | |
**Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, and PyTorch 1.10.0/1.10.1/1.10.2 (following the same procedure).
For older versions, you might need to explicitly specify the latest supported version number in order to prevent a manual installation from source.
You can look up the latest supported version number [here](https://data.pyg.org/whl).
### From source
Ensure that at least PyTorch 1.7.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*:
```
$ python -c "import torch; print(torch.__version__)"
>>> 1.7.0
$ echo $PATH
>>> /usr/local/cuda/bin:...
$ echo $CPATH
>>> /usr/local/cuda/include:...
```
If you want to additionally build `torch-sparse` with METIS support, *e.g.* for partioning, please download and install the [METIS library](https://web.archive.org/web/20211119110155/http://glaros.dtc.umn.edu/gkhome/metis/metis/download) by following the instructions in the `Install.txt` file.
Note that METIS needs to be installed with 64 bit `IDXTYPEWIDTH` by changing `include/metis.h`.
Afterwards, set the environment variable `WITH_METIS=1`.
Then run:
```
pip install torch-scatter torch-sparse
```
When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail.
In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*:
```
export TORCH_CUDA_ARCH_LIST="6.0 6.1 7.2+PTX 7.5+PTX"
```
## Functions
### Coalesce
```
torch_sparse.coalesce(index, value, m, n, op="add") -> (torch.LongTensor, torch.Tensor)
```
Row-wise sorts `index` and removes duplicate entries.
Duplicate entries are removed by scattering them together.
For scattering, any operation of [`torch_scatter`](https://github.com/rusty1s/pytorch_scatter) can be used.
#### Parameters
* **index** *(LongTensor)* - The index tensor of sparse matrix.
* **value** *(Tensor)* - The value tensor of sparse matrix.
* **m** *(int)* - The first dimension of sparse matrix.
* **n** *(int)* - The second dimension of sparse matrix.
* **op** *(string, optional)* - The scatter operation to use. (default: `"add"`)
#### Returns
* **index** *(LongTensor)* - The coalesced index tensor of sparse matrix.
* **value** *(Tensor)* - The coalesced value tensor of sparse matrix.
#### Example
```python
import torch
from torch_sparse import coalesce
index = torch.tensor([[1, 0, 1, 0, 2, 1],
[0, 1, 1, 1, 0, 0]])
value = torch.Tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]])
index, value = coalesce(index, value, m=3, n=2)
```
```
print(index)
tensor([[0, 1, 1, 2],
[1, 0, 1, 0]])
print(value)
tensor([[6.0, 8.0],
[7.0, 9.0],
[3.0, 4.0],
[5.0, 6.0]])
```
### Transpose
```
torch_sparse.transpose(index, value, m, n) -> (torch.LongTensor, torch.Tensor)
```
Transposes dimensions 0 and 1 of a sparse matrix.
#### Parameters
* **index** *(LongTensor)* - The index tensor of sparse matrix.
* **value** *(Tensor)* - The value tensor of sparse matrix.
* **m** *(int)* - The first dimension of sparse matrix.
* **n** *(int)* - The second dimension of sparse matrix.
* **coalesced** *(bool, optional)* - If set to `False`, will not coalesce the output. (default: `True`)
#### Returns
* **index** *(LongTensor)* - The transposed index tensor of sparse matrix.
* **value** *(Tensor)* - The transposed value tensor of sparse matrix.
#### Example
```python
import torch
from torch_sparse import transpose
index = torch.tensor([[1, 0, 1, 0, 2, 1],
[0, 1, 1, 1, 0, 0]])
value = torch.Tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]])
index, value = transpose(index, value, 3, 2)
```
```
print(index)
tensor([[0, 0, 1, 1],
[1, 2, 0, 1]])
print(value)
tensor([[7.0, 9.0],
[5.0, 6.0],
[6.0, 8.0],
[3.0, 4.0]])
```
### Sparse Dense Matrix Multiplication
```
torch_sparse.spmm(index, value, m, n, matrix) -> torch.Tensor
```
Matrix product of a sparse matrix with a dense matrix.
#### Parameters
* **index** *(LongTensor)* - The index tensor of sparse matrix.
* **value** *(Tensor)* - The value tensor of sparse matrix.
* **m** *(int)* - The first dimension of sparse matrix.
* **n** *(int)* - The second dimension of sparse matrix.
* **matrix** *(Tensor)* - The dense matrix.
#### Returns
* **out** *(Tensor)* - The dense output matrix.
#### Example
```python
import torch
from torch_sparse import spmm
index = torch.tensor([[0, 0, 1, 2, 2],
[0, 2, 1, 0, 1]])
value = torch.Tensor([1, 2, 4, 1, 3])
matrix = torch.Tensor([[1, 4], [2, 5], [3, 6]])
out = spmm(index, value, 3, 3, matrix)
```
```
print(out)
tensor([[7.0, 16.0],
[8.0, 20.0],
[7.0, 19.0]])
```
### Sparse Sparse Matrix Multiplication
```
torch_sparse.spspmm(indexA, valueA, indexB, valueB, m, k, n) -> (torch.LongTensor, torch.Tensor)
```
Matrix product of two sparse tensors.
Both input sparse matrices need to be **coalesced** (use the `coalesced` attribute to force).
#### Parameters
* **indexA** *(LongTensor)* - The index tensor of first sparse matrix.
* **valueA** *(Tensor)* - The value tensor of first sparse matrix.
* **indexB** *(LongTensor)* - The index tensor of second sparse matrix.
* **valueB** *(Tensor)* - The value tensor of second sparse matrix.
* **m** *(int)* - The first dimension of first sparse matrix.
* **k** *(int)* - The second dimension of first sparse matrix and first dimension of second sparse matrix.
* **n** *(int)* - The second dimension of second sparse matrix.
* **coalesced** *(bool, optional)*: If set to `True`, will coalesce both input sparse matrices. (default: `False`)
#### Returns
* **index** *(LongTensor)* - The output index tensor of sparse matrix.
* **value** *(Tensor)* - The output value tensor of sparse matrix.
#### Example
```python
import torch
from torch_sparse import spspmm
indexA = torch.tensor([[0, 0, 1, 2, 2], [1, 2, 0, 0, 1]])
valueA = torch.Tensor([1, 2, 3, 4, 5])
indexB = torch.tensor([[0, 2], [1, 0]])
valueB = torch.Tensor([2, 4])
indexC, valueC = spspmm(indexA, valueA, indexB, valueB, 3, 3, 2)
``` ```
## Known Issue
- 完成安装进行单测时,会报错ImportError: Could not find module '_version_cpu' ~,在根目录/下查找一下,然后把库文件目录添加一下软链接即可。
``` ```
print(indexC) find / -name "_version_cpu.so"
tensor([[0, 1, 2], cd /torch-sparce/torch_sparse
[0, 1, 1]]) ln -s /usr/local/lib/python3.8/site-packages/torch_sparse/* .
print(valueC)
tensor([8.0, 6.0, 8.0])
``` ```
## Running tests - 编译torch_sparse==0.6.15 目前不支持torch2.1版本的torch,如果编译torch2.1版本的torch_sparse0.6.15版本需要修改一些代码,文件路径pytorch_sparse/csrc/version.cpp
```shell
``` static auto registry = torch::RegisterOperators().op("torch_sparse::cuda_version", &sparse::cuda_version); -> static auto registry = torch::RegisterOperators().op("torch_sparse::cuda_version", [] { return sparse::cuda_version(); });
pytest
``` ```
## C++ API ## 参考资料
```shell
`torch-sparse` also offers a C++ API that contains C++ equivalent of python models. https://github.com/rusty1s/pytorch_spline_conv
For this, we need to add `TorchLib` to the `-DCMAKE_PREFIX_PATH` (*e.g.*, it may exists in `{CONDA}/lib/python{X.X}/site-packages/torch` if installed via `conda`):
```
mkdir build
cd build
# Add -DWITH_CUDA=on support for CUDA support
cmake -DCMAKE_PREFIX_PATH="..." ..
make
make install
``` ```
[pypi-image]: https://badge.fury.io/py/torch-sparse.svg
[pypi-url]: https://pypi.python.org/pypi/torch-sparse
[testing-image]: https://github.com/rusty1s/pytorch_sparse/actions/workflows/testing.yml/badge.svg
[testing-url]: https://github.com/rusty1s/pytorch_sparse/actions/workflows/testing.yml
[linting-image]: https://github.com/rusty1s/pytorch_sparse/actions/workflows/linting.yml/badge.svg
[linting-url]: https://github.com/rusty1s/pytorch_sparse/actions/workflows/linting.yml
[coverage-image]: https://codecov.io/gh/rusty1s/pytorch_sparse/branch/master/graph/badge.svg
[coverage-url]: https://codecov.io/github/rusty1s/pytorch_sparse?branch=master
# PyTorch Sparse
[![PyPI Version][pypi-image]][pypi-url]
[![Testing Status][testing-image]][testing-url]
[![Linting Status][linting-image]][linting-url]
[![Code Coverage][coverage-image]][coverage-url]
--------------------------------------------------------------------------------
This package consists of a small extension library of optimized sparse matrix operations with autograd support.
This package currently consists of the following methods:
* **[Coalesce](#coalesce)**
* **[Transpose](#transpose)**
* **[Sparse Dense Matrix Multiplication](#sparse-dense-matrix-multiplication)**
* **[Sparse Sparse Matrix Multiplication](#sparse-sparse-matrix-multiplication)**
All included operations work on varying data types and are implemented both for CPU and GPU.
To avoid the hazzle of creating [`torch.sparse_coo_tensor`](https://pytorch.org/docs/stable/torch.html?highlight=sparse_coo_tensor#torch.sparse_coo_tensor), this package defines operations on sparse tensors by simply passing `index` and `value` tensors as arguments ([with same shapes as defined in PyTorch](https://pytorch.org/docs/stable/sparse.html)).
Note that only `value` comes with autograd support, as `index` is discrete and therefore not differentiable.
## Installation
### Anaconda
**Update:** You can now install `pytorch-sparse` via [Anaconda](https://anaconda.org/pyg/pytorch-sparse) for all major OS/PyTorch/CUDA combinations 🤗
Given that you have [`pytorch >= 1.8.0` installed](https://pytorch.org/get-started/locally/), simply run
```
conda install pytorch-sparse -c pyg
```
#### Note: Conda packages are not published for PyTorch 1.12 yet
### Binaries
We alternatively provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl).
#### PyTorch 1.12
To install the binaries for PyTorch 1.12.0, simply run
```
pip install torch-scatter torch-sparse -f https://data.pyg.org/whl/torch-1.12.0+${CUDA}.html
```
where `${CUDA}` should be replaced by either `cpu`, `cu102`, `cu113`, or `cu116` depending on your PyTorch installation.
| | `cpu` | `cu102` | `cu113` | `cu116` |
|-------------|-------|---------|---------|---------|
| **Linux** | ✅ | ✅ | ✅ | ✅ |
| **Windows** | ✅ | | ✅ | ✅ |
| **macOS** | ✅ | | | |
#### PyTorch 1.11
To install the binaries for PyTorch 1.11.0, simply run
```
pip install torch-scatter torch-sparse -f https://data.pyg.org/whl/torch-1.11.0+${CUDA}.html
```
where `${CUDA}` should be replaced by either `cpu`, `cu102`, `cu113`, or `cu115` depending on your PyTorch installation.
| | `cpu` | `cu102` | `cu113` | `cu115` |
|-------------|-------|---------|---------|---------|
| **Linux** | ✅ | ✅ | ✅ | ✅ |
| **Windows** | ✅ | | ✅ | ✅ |
| **macOS** | ✅ | | | |
**Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, and PyTorch 1.10.0/1.10.1/1.10.2 (following the same procedure).
For older versions, you might need to explicitly specify the latest supported version number in order to prevent a manual installation from source.
You can look up the latest supported version number [here](https://data.pyg.org/whl).
### From source
Ensure that at least PyTorch 1.7.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*:
```
$ python -c "import torch; print(torch.__version__)"
>>> 1.7.0
$ echo $PATH
>>> /usr/local/cuda/bin:...
$ echo $CPATH
>>> /usr/local/cuda/include:...
```
If you want to additionally build `torch-sparse` with METIS support, *e.g.* for partioning, please download and install the [METIS library](https://web.archive.org/web/20211119110155/http://glaros.dtc.umn.edu/gkhome/metis/metis/download) by following the instructions in the `Install.txt` file.
Note that METIS needs to be installed with 64 bit `IDXTYPEWIDTH` by changing `include/metis.h`.
Afterwards, set the environment variable `WITH_METIS=1`.
Then run:
```
pip install torch-scatter torch-sparse
```
When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail.
In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*:
```
export TORCH_CUDA_ARCH_LIST="6.0 6.1 7.2+PTX 7.5+PTX"
```
## Functions
### Coalesce
```
torch_sparse.coalesce(index, value, m, n, op="add") -> (torch.LongTensor, torch.Tensor)
```
Row-wise sorts `index` and removes duplicate entries.
Duplicate entries are removed by scattering them together.
For scattering, any operation of [`torch_scatter`](https://github.com/rusty1s/pytorch_scatter) can be used.
#### Parameters
* **index** *(LongTensor)* - The index tensor of sparse matrix.
* **value** *(Tensor)* - The value tensor of sparse matrix.
* **m** *(int)* - The first dimension of sparse matrix.
* **n** *(int)* - The second dimension of sparse matrix.
* **op** *(string, optional)* - The scatter operation to use. (default: `"add"`)
#### Returns
* **index** *(LongTensor)* - The coalesced index tensor of sparse matrix.
* **value** *(Tensor)* - The coalesced value tensor of sparse matrix.
#### Example
```python
import torch
from torch_sparse import coalesce
index = torch.tensor([[1, 0, 1, 0, 2, 1],
[0, 1, 1, 1, 0, 0]])
value = torch.Tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]])
index, value = coalesce(index, value, m=3, n=2)
```
```
print(index)
tensor([[0, 1, 1, 2],
[1, 0, 1, 0]])
print(value)
tensor([[6.0, 8.0],
[7.0, 9.0],
[3.0, 4.0],
[5.0, 6.0]])
```
### Transpose
```
torch_sparse.transpose(index, value, m, n) -> (torch.LongTensor, torch.Tensor)
```
Transposes dimensions 0 and 1 of a sparse matrix.
#### Parameters
* **index** *(LongTensor)* - The index tensor of sparse matrix.
* **value** *(Tensor)* - The value tensor of sparse matrix.
* **m** *(int)* - The first dimension of sparse matrix.
* **n** *(int)* - The second dimension of sparse matrix.
* **coalesced** *(bool, optional)* - If set to `False`, will not coalesce the output. (default: `True`)
#### Returns
* **index** *(LongTensor)* - The transposed index tensor of sparse matrix.
* **value** *(Tensor)* - The transposed value tensor of sparse matrix.
#### Example
```python
import torch
from torch_sparse import transpose
index = torch.tensor([[1, 0, 1, 0, 2, 1],
[0, 1, 1, 1, 0, 0]])
value = torch.Tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]])
index, value = transpose(index, value, 3, 2)
```
```
print(index)
tensor([[0, 0, 1, 1],
[1, 2, 0, 1]])
print(value)
tensor([[7.0, 9.0],
[5.0, 6.0],
[6.0, 8.0],
[3.0, 4.0]])
```
### Sparse Dense Matrix Multiplication
```
torch_sparse.spmm(index, value, m, n, matrix) -> torch.Tensor
```
Matrix product of a sparse matrix with a dense matrix.
#### Parameters
* **index** *(LongTensor)* - The index tensor of sparse matrix.
* **value** *(Tensor)* - The value tensor of sparse matrix.
* **m** *(int)* - The first dimension of sparse matrix.
* **n** *(int)* - The second dimension of sparse matrix.
* **matrix** *(Tensor)* - The dense matrix.
#### Returns
* **out** *(Tensor)* - The dense output matrix.
#### Example
```python
import torch
from torch_sparse import spmm
index = torch.tensor([[0, 0, 1, 2, 2],
[0, 2, 1, 0, 1]])
value = torch.Tensor([1, 2, 4, 1, 3])
matrix = torch.Tensor([[1, 4], [2, 5], [3, 6]])
out = spmm(index, value, 3, 3, matrix)
```
```
print(out)
tensor([[7.0, 16.0],
[8.0, 20.0],
[7.0, 19.0]])
```
### Sparse Sparse Matrix Multiplication
```
torch_sparse.spspmm(indexA, valueA, indexB, valueB, m, k, n) -> (torch.LongTensor, torch.Tensor)
```
Matrix product of two sparse tensors.
Both input sparse matrices need to be **coalesced** (use the `coalesced` attribute to force).
#### Parameters
* **indexA** *(LongTensor)* - The index tensor of first sparse matrix.
* **valueA** *(Tensor)* - The value tensor of first sparse matrix.
* **indexB** *(LongTensor)* - The index tensor of second sparse matrix.
* **valueB** *(Tensor)* - The value tensor of second sparse matrix.
* **m** *(int)* - The first dimension of first sparse matrix.
* **k** *(int)* - The second dimension of first sparse matrix and first dimension of second sparse matrix.
* **n** *(int)* - The second dimension of second sparse matrix.
* **coalesced** *(bool, optional)*: If set to `True`, will coalesce both input sparse matrices. (default: `False`)
#### Returns
* **index** *(LongTensor)* - The output index tensor of sparse matrix.
* **value** *(Tensor)* - The output value tensor of sparse matrix.
#### Example
```python
import torch
from torch_sparse import spspmm
indexA = torch.tensor([[0, 0, 1, 2, 2], [1, 2, 0, 0, 1]])
valueA = torch.Tensor([1, 2, 3, 4, 5])
indexB = torch.tensor([[0, 2], [1, 0]])
valueB = torch.Tensor([2, 4])
indexC, valueC = spspmm(indexA, valueA, indexB, valueB, 3, 3, 2)
```
```
print(indexC)
tensor([[0, 1, 2],
[0, 1, 1]])
print(valueC)
tensor([8.0, 6.0, 8.0])
```
## Running tests
```
pytest
```
## C++ API
`torch-sparse` also offers a C++ API that contains C++ equivalent of python models.
For this, we need to add `TorchLib` to the `-DCMAKE_PREFIX_PATH` (*e.g.*, it may exists in `{CONDA}/lib/python{X.X}/site-packages/torch` if installed via `conda`):
```
mkdir build
cd build
# Add -DWITH_CUDA=on support for CUDA support
cmake -DCMAKE_PREFIX_PATH="..." ..
make
make install
```
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment