"src/vscode:/vscode.git/clone" did not exist on "04717fd861f897012f1239c2951ea21cb7184749"
Commit 61f01b59 authored by rusty1s's avatar rusty1s
Browse files

added saint sampling

parent a1ae9033
import pytest
import torch
from torch_sparse.tensor import SparseTensor
from .utils import devices
@pytest.mark.parametrize('device', devices)
def test_sample_node(device):
row = torch.tensor([0, 0, 1, 1, 2, 2, 2, 3, 3, 4])
col = torch.tensor([1, 2, 0, 2, 0, 1, 3, 2, 4, 3])
adj = SparseTensor(row=row, col=col).to(device)
adj, perm = adj.sample_node(num_nodes=3)
@pytest.mark.parametrize('device', devices)
def test_sample_edge(device):
row = torch.tensor([0, 0, 1, 1, 2, 2, 2, 3, 3, 4])
col = torch.tensor([1, 2, 0, 2, 0, 1, 3, 2, 4, 3])
adj = SparseTensor(row=row, col=col).to(device)
adj, perm = adj.sample_edge(num_edges=3)
@pytest.mark.parametrize('device', devices)
def test_sample_rw(device):
row = torch.tensor([0, 0, 1, 1, 2, 2, 2, 3, 3, 4])
col = torch.tensor([1, 2, 0, 2, 0, 1, 3, 2, 4, 3])
adj = SparseTensor(row=row, col=col).to(device)
adj, perm = adj.sample_rw(num_root_nodes=3, walk_length=2)
...@@ -55,6 +55,7 @@ from .reduce import sum, mean, min, max # noqa ...@@ -55,6 +55,7 @@ from .reduce import sum, mean, min, max # noqa
from .matmul import matmul # noqa from .matmul import matmul # noqa
from .cat import cat, cat_diag # noqa from .cat import cat, cat_diag # noqa
from .metis import partition # noqa from .metis import partition # noqa
from .saint import sample_node, sample_edge, sample_rw # noqa
from .convert import to_torch_sparse, from_torch_sparse # noqa from .convert import to_torch_sparse, from_torch_sparse # noqa
from .convert import to_scipy, from_scipy # noqa from .convert import to_scipy, from_scipy # noqa
...@@ -95,6 +96,9 @@ __all__ = [ ...@@ -95,6 +96,9 @@ __all__ = [
'cat', 'cat',
'cat_diag', 'cat_diag',
'partition', 'partition',
'sample_node',
'sample_edge',
'sample_rw',
'to_torch_sparse', 'to_torch_sparse',
'from_torch_sparse', 'from_torch_sparse',
'to_scipy', 'to_scipy',
......
from typing import Tuple
import torch
import numpy as np
from torch_scatter import scatter_add
from torch_sparse.tensor import SparseTensor
def sample_node(src: SparseTensor,
num_nodes: int) -> Tuple[torch.Tensor, torch.Tensor]:
row, col, _ = src.coo()
inv_in_deg = src.storage.colcount().to(torch.float).pow_(-1)
inv_in_deg[inv_in_deg == float('inf')] = 0
prob = inv_in_deg[col]
prob.mul_(prob)
prob = scatter_add(prob, row, dim=0, dim_size=src.size(0))
prob.div_(prob.sum())
node_idx = prob.multinomial(num_nodes, replacement=True).unique()
return src.permute(node_idx), node_idx
def sample_edge(src: SparseTensor,
num_edges: int) -> Tuple[torch.Tensor, torch.Tensor]:
row, col, _ = src.coo()
inv_out_deg = src.storage.rowcount().to(torch.float).pow_(-1)
inv_out_deg[inv_out_deg == float('inf')] = 0
inv_in_deg = src.storage.colcount().to(torch.float).pow_(-1)
inv_in_deg[inv_in_deg == float('inf')] = 0
prob = inv_out_deg[row] + inv_in_deg[col]
prob.div_(prob.sum())
edge_idx = prob.multinomial(num_edges, replacement=True)
node_idx = col[edge_idx].unique()
return src.permute(node_idx), node_idx
def sample_rw(src: SparseTensor, num_root_nodes: int,
walk_length: int) -> Tuple[torch.Tensor, torch.Tensor]:
start = np.random.choice(src.size(0), size=num_root_nodes, replace=False)
start = torch.from_numpy(start).to(src.device())
# get random walks of length `walk_length`:
# => `rw.size(1) == walk_length + 1
return None, None
SparseTensor.sample_node = sample_node
SparseTensor.sample_edge = sample_edge
SparseTensor.sample_rw = sample_rw
...@@ -12,17 +12,25 @@ from torch_sparse.utils import is_scalar ...@@ -12,17 +12,25 @@ from torch_sparse.utils import is_scalar
class SparseTensor(object): class SparseTensor(object):
storage: SparseStorage storage: SparseStorage
def __init__(self, row: Optional[torch.Tensor] = None, def __init__(self,
row: Optional[torch.Tensor] = None,
rowptr: Optional[torch.Tensor] = None, rowptr: Optional[torch.Tensor] = None,
col: Optional[torch.Tensor] = None, col: Optional[torch.Tensor] = None,
value: Optional[torch.Tensor] = None, value: Optional[torch.Tensor] = None,
sparse_sizes: Optional[Tuple[int, int]] = None, sparse_sizes: Optional[Tuple[int, int]] = None,
is_sorted: bool = False): is_sorted: bool = False):
self.storage = SparseStorage(row=row, rowptr=rowptr, col=col, self.storage = SparseStorage(
value=value, sparse_sizes=sparse_sizes, row=row,
rowcount=None, colptr=None, colcount=None, rowptr=rowptr,
csr2csc=None, csc2csr=None, col=col,
is_sorted=is_sorted) value=value,
sparse_sizes=sparse_sizes,
rowcount=None,
colptr=None,
colcount=None,
csr2csc=None,
csc2csr=None,
is_sorted=is_sorted)
@classmethod @classmethod
def from_storage(self, storage: SparseStorage): def from_storage(self, storage: SparseStorage):
...@@ -45,12 +53,17 @@ class SparseTensor(object): ...@@ -45,12 +53,17 @@ class SparseTensor(object):
if has_value: if has_value:
value = mat[row, col] value = mat[row, col]
return SparseTensor(row=row, rowptr=None, col=col, value=value, return SparseTensor(
sparse_sizes=(mat.size(0), mat.size(1)), row=row,
is_sorted=True) rowptr=None,
col=col,
value=value,
sparse_sizes=(mat.size(0), mat.size(1)),
is_sorted=True)
@classmethod @classmethod
def from_torch_sparse_coo_tensor(self, mat: torch.Tensor, def from_torch_sparse_coo_tensor(self,
mat: torch.Tensor,
has_value: bool = True): has_value: bool = True):
mat = mat.coalesce() mat = mat.coalesce()
index = mat._indices() index = mat._indices()
...@@ -60,13 +73,20 @@ class SparseTensor(object): ...@@ -60,13 +73,20 @@ class SparseTensor(object):
if has_value: if has_value:
value = mat._values() value = mat._values()
return SparseTensor(row=row, rowptr=None, col=col, value=value, return SparseTensor(
sparse_sizes=(mat.size(0), mat.size(1)), row=row,
is_sorted=True) rowptr=None,
col=col,
value=value,
sparse_sizes=(mat.size(0), mat.size(1)),
is_sorted=True)
@classmethod @classmethod
def eye(self, M: int, N: Optional[int] = None, def eye(self,
options: Optional[torch.Tensor] = None, has_value: bool = True, M: int,
N: Optional[int] = None,
options: Optional[torch.Tensor] = None,
has_value: bool = True,
fill_cache: bool = False): fill_cache: bool = False):
N = M if N is None else N N = M if N is None else N
...@@ -84,8 +104,8 @@ class SparseTensor(object): ...@@ -84,8 +104,8 @@ class SparseTensor(object):
value: Optional[torch.Tensor] = None value: Optional[torch.Tensor] = None
if has_value: if has_value:
if options is not None: if options is not None:
value = torch.ones(row.numel(), dtype=options.dtype, value = torch.ones(
device=row.device) row.numel(), dtype=options.dtype, device=row.device)
else: else:
value = torch.ones(row.numel(), device=row.device) value = torch.ones(row.numel(), device=row.device)
...@@ -108,9 +128,17 @@ class SparseTensor(object): ...@@ -108,9 +128,17 @@ class SparseTensor(object):
csr2csc = csc2csr = row csr2csc = csc2csr = row
storage: SparseStorage = SparseStorage( storage: SparseStorage = SparseStorage(
row=row, rowptr=rowptr, col=col, value=value, sparse_sizes=(M, N), row=row,
rowcount=rowcount, colptr=colptr, colcount=colcount, rowptr=rowptr,
csr2csc=csr2csc, csc2csr=csc2csr, is_sorted=True) col=col,
value=value,
sparse_sizes=(M, N),
rowcount=rowcount,
colptr=colptr,
colcount=colcount,
csr2csc=csr2csc,
csc2csr=csc2csr,
is_sorted=True)
self = SparseTensor.__new__(SparseTensor) self = SparseTensor.__new__(SparseTensor)
self.storage = storage self.storage = storage
...@@ -153,12 +181,14 @@ class SparseTensor(object): ...@@ -153,12 +181,14 @@ class SparseTensor(object):
def has_value(self) -> bool: def has_value(self) -> bool:
return self.storage.has_value() return self.storage.has_value()
def set_value_(self, value: Optional[torch.Tensor], def set_value_(self,
value: Optional[torch.Tensor],
layout: Optional[str] = None): layout: Optional[str] = None):
self.storage.set_value_(value, layout) self.storage.set_value_(value, layout)
return self return self
def set_value(self, value: Optional[torch.Tensor], def set_value(self,
value: Optional[torch.Tensor],
layout: Optional[str] = None): layout: Optional[str] = None):
return self.from_storage(self.storage.set_value(value, layout)) return self.from_storage(self.storage.set_value(value, layout))
...@@ -187,23 +217,31 @@ class SparseTensor(object): ...@@ -187,23 +217,31 @@ class SparseTensor(object):
# Utility functions ####################################################### # Utility functions #######################################################
def fill_value_(self, fill_value: float, def fill_value_(self,
fill_value: float,
options: Optional[torch.Tensor] = None): options: Optional[torch.Tensor] = None):
if options is not None: if options is not None:
value = torch.full((self.nnz(), ), fill_value, dtype=options.dtype, value = torch.full((self.nnz(), ),
fill_value,
dtype=options.dtype,
device=self.device()) device=self.device())
else: else:
value = torch.full((self.nnz(), ), fill_value, value = torch.full((self.nnz(), ),
fill_value,
device=self.device()) device=self.device())
return self.set_value_(value, layout='coo') return self.set_value_(value, layout='coo')
def fill_value(self, fill_value: float, def fill_value(self,
fill_value: float,
options: Optional[torch.Tensor] = None): options: Optional[torch.Tensor] = None):
if options is not None: if options is not None:
value = torch.full((self.nnz(), ), fill_value, dtype=options.dtype, value = torch.full((self.nnz(), ),
fill_value,
dtype=options.dtype,
device=self.device()) device=self.device())
else: else:
value = torch.full((self.nnz(), ), fill_value, value = torch.full((self.nnz(), ),
fill_value,
device=self.device()) device=self.device())
return self.set_value(value, layout='coo') return self.set_value(value, layout='coo')
...@@ -270,8 +308,13 @@ class SparseTensor(object): ...@@ -270,8 +308,13 @@ class SparseTensor(object):
N = max(self.size(0), self.size(1)) N = max(self.size(0), self.size(1))
out = SparseTensor(row=row, rowptr=None, col=col, value=value, out = SparseTensor(
sparse_sizes=(N, N), is_sorted=False) row=row,
rowptr=None,
col=col,
value=value,
sparse_sizes=(N, N),
is_sorted=False)
out = out.coalesce(reduce) out = out.coalesce(reduce)
return out return out
...@@ -294,7 +337,8 @@ class SparseTensor(object): ...@@ -294,7 +337,8 @@ class SparseTensor(object):
else: else:
return False return False
def requires_grad_(self, requires_grad: bool = True, def requires_grad_(self,
requires_grad: bool = True,
options: Optional[torch.Tensor] = None): options: Optional[torch.Tensor] = None):
if requires_grad and not self.has_value(): if requires_grad and not self.has_value():
self.fill_value_(1., options=options) self.fill_value_(1., options=options)
...@@ -315,8 +359,8 @@ class SparseTensor(object): ...@@ -315,8 +359,8 @@ class SparseTensor(object):
if value is not None: if value is not None:
return value return value
else: else:
return torch.tensor(0., dtype=torch.float, return torch.tensor(
device=self.storage.col().device) 0., dtype=torch.float, device=self.storage.col().device)
def device(self): def device(self):
return self.storage.col().device return self.storage.col().device
...@@ -324,7 +368,8 @@ class SparseTensor(object): ...@@ -324,7 +368,8 @@ class SparseTensor(object):
def cpu(self): def cpu(self):
return self.device_as(torch.tensor(0.), non_blocking=False) return self.device_as(torch.tensor(0.), non_blocking=False)
def cuda(self, options: Optional[torch.Tensor] = None, def cuda(self,
options: Optional[torch.Tensor] = None,
non_blocking: bool = False): non_blocking: bool = False):
if options is not None: if options is not None:
return self.device_as(options, non_blocking) return self.device_as(options, non_blocking)
...@@ -387,19 +432,19 @@ class SparseTensor(object): ...@@ -387,19 +432,19 @@ class SparseTensor(object):
row, col, value = self.coo() row, col, value = self.coo()
if value is not None: if value is not None:
mat = torch.zeros(self.sizes(), dtype=value.dtype, mat = torch.zeros(
device=self.device()) self.sizes(), dtype=value.dtype, device=self.device())
elif options is not None: elif options is not None:
mat = torch.zeros(self.sizes(), dtype=options.dtype, mat = torch.zeros(
device=self.device()) self.sizes(), dtype=options.dtype, device=self.device())
else: else:
mat = torch.zeros(self.sizes(), device=self.device()) mat = torch.zeros(self.sizes(), device=self.device())
if value is not None: if value is not None:
mat[row, col] = value mat[row, col] = value
else: else:
mat[row, col] = torch.ones(self.nnz(), dtype=mat.dtype, mat[row, col] = torch.ones(
device=mat.device) self.nnz(), dtype=mat.dtype, device=mat.device)
return mat return mat
...@@ -409,8 +454,8 @@ class SparseTensor(object): ...@@ -409,8 +454,8 @@ class SparseTensor(object):
index = torch.stack([row, col], dim=0) index = torch.stack([row, col], dim=0)
if value is None: if value is None:
if options is not None: if options is not None:
value = torch.ones(self.nnz(), dtype=options.dtype, value = torch.ones(
device=self.device()) self.nnz(), dtype=options.dtype, device=self.device())
else: else:
value = torch.ones(self.nnz(), device=self.device()) value = torch.ones(self.nnz(), device=self.device())
...@@ -434,7 +479,7 @@ def is_shared(self: SparseTensor) -> bool: ...@@ -434,7 +479,7 @@ def is_shared(self: SparseTensor) -> bool:
def to(self, *args: Optional[List[Any]], def to(self, *args: Optional[List[Any]],
**kwargs: Optional[Dict[str, Any]]) -> SparseTensor: **kwargs: Optional[Dict[str, Any]]) -> SparseTensor:
device, dtype, non_blocking, _ = torch._C._nn._parse_to(*args, **kwargs) device, dtype, non_blocking = torch._C._nn._parse_to(*args, **kwargs)
if dtype is not None: if dtype is not None:
self = self.type_as(torch.tensor(0., dtype=dtype)) self = self.type_as(torch.tensor(0., dtype=dtype))
...@@ -515,8 +560,8 @@ SparseTensor.__repr__ = __repr__ ...@@ -515,8 +560,8 @@ SparseTensor.__repr__ = __repr__
# Scipy Conversions ########################################################### # Scipy Conversions ###########################################################
ScipySparseMatrix = Union[scipy.sparse.coo_matrix, scipy.sparse.csr_matrix, ScipySparseMatrix = Union[scipy.sparse.coo_matrix, scipy.sparse.
scipy.sparse.csc_matrix] csr_matrix, scipy.sparse.csc_matrix]
@torch.jit.ignore @torch.jit.ignore
...@@ -535,16 +580,25 @@ def from_scipy(mat: ScipySparseMatrix, has_value: bool = True) -> SparseTensor: ...@@ -535,16 +580,25 @@ def from_scipy(mat: ScipySparseMatrix, has_value: bool = True) -> SparseTensor:
value = torch.from_numpy(mat.data) value = torch.from_numpy(mat.data)
sparse_sizes = mat.shape[:2] sparse_sizes = mat.shape[:2]
storage = SparseStorage(row=row, rowptr=rowptr, col=col, value=value, storage = SparseStorage(
sparse_sizes=sparse_sizes, rowcount=None, row=row,
colptr=colptr, colcount=None, csr2csc=None, rowptr=rowptr,
csc2csr=None, is_sorted=True) col=col,
value=value,
sparse_sizes=sparse_sizes,
rowcount=None,
colptr=colptr,
colcount=None,
csr2csc=None,
csc2csr=None,
is_sorted=True)
return SparseTensor.from_storage(storage) return SparseTensor.from_storage(storage)
@torch.jit.ignore @torch.jit.ignore
def to_scipy(self: SparseTensor, layout: Optional[str] = None, def to_scipy(self: SparseTensor,
layout: Optional[str] = None,
dtype: Optional[torch.dtype] = None) -> ScipySparseMatrix: dtype: Optional[torch.dtype] = None) -> ScipySparseMatrix:
assert self.dim() == 2 assert self.dim() == 2
layout = get_layout(layout) layout = get_layout(layout)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment