matmul.py 6.42 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
import torch
rusty1s's avatar
rusty1s committed
2
import scipy.sparse
rusty1s's avatar
rusty1s committed
3
4
5
6
7
8
9
10
from torch_sparse import spmm_cpu
from torch_scatter import scatter_add

try:
    from torch_sparse import spmm_cuda
except ImportError:
    spmm_cuda = None

rusty1s's avatar
rusty1s committed
11
12
13
14
15
try:
    from torch_sparse import spspmm_cuda
except ImportError:
    spspmm_cuda = None

rusty1s's avatar
rusty1s committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

def spmm(is_cuda):
    return spmm_cuda if is_cuda else spmm_cpu


class SPMM(torch.autograd.Function):
    @staticmethod
    def forward(ctx, index, rowcount, rowptr, colptr, csr2csc, value, mat,
                reduce):
        out, arg_out = spmm(mat.is_cuda).spmm(rowptr, index[1], value, mat,
                                              reduce)

        ctx.reduce = reduce
        ctx.save_for_backward(index, rowcount, rowptr, colptr, csr2csc, value,
                              mat, arg_out)

        if reduce == 'min' or reduce == 'max':
            return out, arg_out
        else:
            return out

    @staticmethod
    def backward(ctx, grad_out, *args):
        data = ctx.saved_tensors
        index, rowcount, rowptr, colptr, csr2csc, value, mat, arg_out = data

rusty1s's avatar
rusty1s committed
42
43
44
45
46
47
        invalid_arg_mask = arg_out_ind = None
        if ctx.reduce in ['min', 'max'] and (ctx.needs_input_grad[5]
                                             or ctx.needs_input_grad[6]):
            invalid_arg_mask = arg_out == index.size(1)
            arg_out_ind = arg_out.masked_fill(invalid_arg_mask, -1)

rusty1s's avatar
rusty1s committed
48
49
50
51
        grad_value = None
        if ctx.needs_input_grad[5]:
            if ctx.reduce in ['sum', 'add']:
                grad_value = spmm(grad_out.is_cuda).spmm_val_bw(
rusty1s's avatar
rusty1s committed
52
                    index, rowptr, mat, grad_out, ctx.reduce)
rusty1s's avatar
rusty1s committed
53
54
55

            if ctx.reduce == 'mean':
                grad_value = spmm(grad_out.is_cuda).spmm_val_bw(
rusty1s's avatar
rusty1s committed
56
                    index, rowptr, mat, grad_out, ctx.reduce)
rusty1s's avatar
rusty1s committed
57
58

            elif ctx.reduce in ['min', 'max']:
rusty1s's avatar
rusty1s committed
59
                col = index[1][arg_out_ind.flatten()].view_as(arg_out)
rusty1s's avatar
rusty1s committed
60
                out = mat.gather(-2, col).mul_(grad_out)
rusty1s's avatar
rusty1s committed
61
62
63
64
                out.masked_fill_(invalid_arg_mask, 0)
                grad_value = scatter_add(out.flatten(), arg_out.flatten(),
                                         dim=0, dim_size=value.numel() + 1)
                grad_value = grad_value[:-1]
rusty1s's avatar
rusty1s committed
65
66
67
68
69
70

        grad_mat = None
        if ctx.needs_input_grad[6]:
            if ctx.reduce in ['sum', 'add']:
                value = value[csr2csc] if value is not None else value
                grad_mat, _ = spmm(grad_out.is_cuda).spmm(
rusty1s's avatar
rusty1s committed
71
                    colptr, index[0][csr2csc], value, grad_out, 'sum')
rusty1s's avatar
rusty1s committed
72
73
74
75
76
77
78
79
80
81
82

            elif ctx.reduce == 'mean':
                count = rowcount[index[0]].to(mat.dtype).clamp_(min=1)
                value = count.pow_(-1) if value is None else value / count
                row = index[0][csr2csc]
                value = value[csr2csc] if value is not None else value
                grad_mat, _ = spmm(grad_out.is_cuda).spmm(
                    colptr, row, value, grad_out, 'sum')

            elif ctx.reduce in ['min', 'max']:
                if value is not None:
rusty1s's avatar
rusty1s committed
83
                    value = value[arg_out_ind.flatten()].view_as(arg_out)
rusty1s's avatar
rusty1s committed
84
85
86
                    value = value.mul_(grad_out)
                else:
                    value = grad_out
rusty1s's avatar
rusty1s committed
87
88
                value.masked_fill_(invalid_arg_mask, 0)
                col = index[1][arg_out_ind.flatten()].view_as(arg_out)
rusty1s's avatar
rusty1s committed
89
90
91
92
93
94
                grad_mat = scatter_add(value, col, dim=-2,
                                       dim_size=mat.size(-2))

        return None, None, None, None, None, grad_value, grad_mat, None


rusty1s's avatar
rusty1s committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
class SPSPMM(torch.autograd.Function):
    @staticmethod
    def forward(ctx, rowptrA, colA, valueA, rowptrB, colB, valueB, M, N, K):
        if rowptrA.is_cuda:
            indexC, rowptrC, valueC = spspmm_cuda.spspmm(
                rowptrA, colA, valueA, rowptrB, colB, valueB, M, N, K)
        else:
            dtype = None
            if valueA is not None:
                dtype = valueA.dtype
            if valueB is not None:
                dtype = valueB.dtype

            if valueA is None:
                valueA = torch.ones(colA.numel(), dtype=dtype)
            A = scipy.sparse.csr_matrix((valueA, colA, rowptrA), (M, N))

            if valueB is None:
                valueB = torch.ones(colB.numel(), dtype=dtype)
            B = scipy.sparse.csr_matrix((valueB, colB, rowptrB), (N, K))

            C = A @ B

            valueC = torch.from_numpy(
                C.data).to(dtype) if dtype is not None else None
            rowptrC = torch.from_numpy(C.indptr).to(torch.int64)
            C = C.tocoo()
            rowC = torch.from_numpy(C.row).to(torch.int64)
            colC = torch.from_numpy(C.col).to(torch.int64)
            indexC = torch.stack([rowC, colC], dim=0)

        # We cannot return `NoneType` in torch.autograd :(
        if valueC is None:
            return indexC, rowptrC
        else:
            return indexC, rowptrC, valueC

    @staticmethod
    def backward(ctx, grad_indexC, grad_rowptrC, *args):
        grad_valueA = None
        if ctx.needs_input_grad[2]:
            raise NotImplementedError

        grad_valueB = None
        if ctx.needs_input_grad[5]:
            raise NotImplementedError

        return (None, None, grad_valueA, None, None, grad_valueB, None, None,
                None)


rusty1s's avatar
rusty1s committed
146
147
def matmul(src, other, reduce='sum'):
    assert src.dim() == 2 and src.size(-1) == other.size(-2)
rusty1s's avatar
rusty1s committed
148

rusty1s's avatar
rusty1s committed
149
    # Sparse-Dense Matrix Multiplication.
rusty1s's avatar
rusty1s committed
150
    if torch.is_tensor(other):
rusty1s's avatar
rusty1s committed
151
152
153
154
155
156
157
        assert reduce in ['sum', 'add', 'mean', 'min', 'max']
        (index, value), rowptr = src.coo(), src.storage.rowptr

        rowcount = None
        if other.requires_grad and reduce in ['mean']:
            rowcount = src.storage.rowcount

rusty1s's avatar
rusty1s committed
158
159
160
161
        csr2csc = colptr = None
        if other.requires_grad and reduce in ['sum', 'add', 'mean']:
            csr2csc, colptr = src.storage.csr2csc, src.storage.colptr

rusty1s's avatar
rusty1s committed
162
163
164
        return SPMM.apply(index, rowcount, rowptr, colptr, csr2csc, value,
                          other, reduce)

rusty1s's avatar
rusty1s committed
165
    # Sparse-Sparse Matrix Multiplication.
rusty1s's avatar
rusty1s committed
166
167
    elif isinstance(other, src.__class__):
        assert reduce in ['sum', 'add']
rusty1s's avatar
rusty1s committed
168
169
170
171
172
173
174
175
        assert src.dim() == 2 and other.dim() == 2
        data = SPSPMM.apply(*src.csr(), *other.csr(), src.size(0), src.size(1),
                            other.size(1))
        data = data if len(data) == 3 else data + (None, )
        sparse_size = torch.Size([src.size(0), other.size(1)])
        out = src.__class__(data[0], data[2], sparse_size, is_sorted=True)
        out.storage._rowptr = data[1]
        return out
rusty1s's avatar
rusty1s committed
176
177

    raise ValueError