matmul.py 6.52 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
import torch
rusty1s's avatar
rusty1s committed
2
import scipy.sparse
rusty1s's avatar
rusty1s committed
3
4
5
6
7
8
9
10
from torch_sparse import spmm_cpu
from torch_scatter import scatter_add

try:
    from torch_sparse import spmm_cuda
except ImportError:
    spmm_cuda = None

rusty1s's avatar
rusty1s committed
11
12
13
14
15
try:
    from torch_sparse import spspmm_cuda
except ImportError:
    spspmm_cuda = None

rusty1s's avatar
rusty1s committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

def spmm(is_cuda):
    return spmm_cuda if is_cuda else spmm_cpu


class SPMM(torch.autograd.Function):
    @staticmethod
    def forward(ctx, index, rowcount, rowptr, colptr, csr2csc, value, mat,
                reduce):
        out, arg_out = spmm(mat.is_cuda).spmm(rowptr, index[1], value, mat,
                                              reduce)

        ctx.reduce = reduce
        ctx.save_for_backward(index, rowcount, rowptr, colptr, csr2csc, value,
                              mat, arg_out)

        if reduce == 'min' or reduce == 'max':
rusty1s's avatar
rusty1s committed
33
            ctx.mark_non_differentiable(arg_out)
rusty1s's avatar
rusty1s committed
34
35
36
37
38
39
40
41
42
            return out, arg_out
        else:
            return out

    @staticmethod
    def backward(ctx, grad_out, *args):
        data = ctx.saved_tensors
        index, rowcount, rowptr, colptr, csr2csc, value, mat, arg_out = data

rusty1s's avatar
rusty1s committed
43
44
45
46
47
48
        invalid_arg_mask = arg_out_ind = None
        if ctx.reduce in ['min', 'max'] and (ctx.needs_input_grad[5]
                                             or ctx.needs_input_grad[6]):
            invalid_arg_mask = arg_out == index.size(1)
            arg_out_ind = arg_out.masked_fill(invalid_arg_mask, -1)

rusty1s's avatar
rusty1s committed
49
50
51
52
        grad_value = None
        if ctx.needs_input_grad[5]:
            if ctx.reduce in ['sum', 'add']:
                grad_value = spmm(grad_out.is_cuda).spmm_val_bw(
rusty1s's avatar
rusty1s committed
53
                    index, rowptr, mat, grad_out, ctx.reduce)
rusty1s's avatar
rusty1s committed
54
55
56

            if ctx.reduce == 'mean':
                grad_value = spmm(grad_out.is_cuda).spmm_val_bw(
rusty1s's avatar
rusty1s committed
57
                    index, rowptr, mat, grad_out, ctx.reduce)
rusty1s's avatar
rusty1s committed
58
59

            elif ctx.reduce in ['min', 'max']:
rusty1s's avatar
rusty1s committed
60
                col = index[1][arg_out_ind.flatten()].view_as(arg_out)
rusty1s's avatar
rusty1s committed
61
                out = mat.gather(-2, col).mul_(grad_out)
rusty1s's avatar
rusty1s committed
62
63
64
65
                out.masked_fill_(invalid_arg_mask, 0)
                grad_value = scatter_add(out.flatten(), arg_out.flatten(),
                                         dim=0, dim_size=value.numel() + 1)
                grad_value = grad_value[:-1]
rusty1s's avatar
rusty1s committed
66
67
68
69
70
71

        grad_mat = None
        if ctx.needs_input_grad[6]:
            if ctx.reduce in ['sum', 'add']:
                value = value[csr2csc] if value is not None else value
                grad_mat, _ = spmm(grad_out.is_cuda).spmm(
rusty1s's avatar
rusty1s committed
72
                    colptr, index[0][csr2csc], value, grad_out, 'sum')
rusty1s's avatar
rusty1s committed
73
74
75
76
77
78
79
80
81
82
83

            elif ctx.reduce == 'mean':
                count = rowcount[index[0]].to(mat.dtype).clamp_(min=1)
                value = count.pow_(-1) if value is None else value / count
                row = index[0][csr2csc]
                value = value[csr2csc] if value is not None else value
                grad_mat, _ = spmm(grad_out.is_cuda).spmm(
                    colptr, row, value, grad_out, 'sum')

            elif ctx.reduce in ['min', 'max']:
                if value is not None:
rusty1s's avatar
rusty1s committed
84
                    value = value[arg_out_ind.flatten()].view_as(arg_out)
rusty1s's avatar
rusty1s committed
85
86
87
                    value = value.mul_(grad_out)
                else:
                    value = grad_out
rusty1s's avatar
rusty1s committed
88
89
                value.masked_fill_(invalid_arg_mask, 0)
                col = index[1][arg_out_ind.flatten()].view_as(arg_out)
rusty1s's avatar
rusty1s committed
90
91
92
93
94
95
                grad_mat = scatter_add(value, col, dim=-2,
                                       dim_size=mat.size(-2))

        return None, None, None, None, None, grad_value, grad_mat, None


rusty1s's avatar
rusty1s committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
class SPSPMM(torch.autograd.Function):
    @staticmethod
    def forward(ctx, rowptrA, colA, valueA, rowptrB, colB, valueB, M, N, K):
        if rowptrA.is_cuda:
            indexC, rowptrC, valueC = spspmm_cuda.spspmm(
                rowptrA, colA, valueA, rowptrB, colB, valueB, M, N, K)
        else:
            dtype = None
            if valueA is not None:
                dtype = valueA.dtype
            if valueB is not None:
                dtype = valueB.dtype

            if valueA is None:
                valueA = torch.ones(colA.numel(), dtype=dtype)
            A = scipy.sparse.csr_matrix((valueA, colA, rowptrA), (M, N))

            if valueB is None:
                valueB = torch.ones(colB.numel(), dtype=dtype)
            B = scipy.sparse.csr_matrix((valueB, colB, rowptrB), (N, K))

            C = A @ B

            valueC = torch.from_numpy(
                C.data).to(dtype) if dtype is not None else None
            rowptrC = torch.from_numpy(C.indptr).to(torch.int64)
            C = C.tocoo()
            rowC = torch.from_numpy(C.row).to(torch.int64)
            colC = torch.from_numpy(C.col).to(torch.int64)
            indexC = torch.stack([rowC, colC], dim=0)

rusty1s's avatar
rusty1s committed
127
128
        ctx.mark_non_differentiable(indexC, rowptrC)

rusty1s's avatar
rusty1s committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
        # We cannot return `NoneType` in torch.autograd :(
        if valueC is None:
            return indexC, rowptrC
        else:
            return indexC, rowptrC, valueC

    @staticmethod
    def backward(ctx, grad_indexC, grad_rowptrC, *args):
        grad_valueA = None
        if ctx.needs_input_grad[2]:
            raise NotImplementedError

        grad_valueB = None
        if ctx.needs_input_grad[5]:
            raise NotImplementedError

        return (None, None, grad_valueA, None, None, grad_valueB, None, None,
                None)


rusty1s's avatar
rusty1s committed
149
150
def matmul(src, other, reduce='sum'):
    assert src.dim() == 2 and src.size(-1) == other.size(-2)
rusty1s's avatar
rusty1s committed
151

rusty1s's avatar
rusty1s committed
152
    # Sparse-Dense Matrix Multiplication.
rusty1s's avatar
rusty1s committed
153
    if torch.is_tensor(other):
rusty1s's avatar
rusty1s committed
154
155
156
157
158
159
160
        assert reduce in ['sum', 'add', 'mean', 'min', 'max']
        (index, value), rowptr = src.coo(), src.storage.rowptr

        rowcount = None
        if other.requires_grad and reduce in ['mean']:
            rowcount = src.storage.rowcount

rusty1s's avatar
rusty1s committed
161
162
163
164
        csr2csc = colptr = None
        if other.requires_grad and reduce in ['sum', 'add', 'mean']:
            csr2csc, colptr = src.storage.csr2csc, src.storage.colptr

rusty1s's avatar
rusty1s committed
165
166
167
        return SPMM.apply(index, rowcount, rowptr, colptr, csr2csc, value,
                          other, reduce)

rusty1s's avatar
rusty1s committed
168
    # Sparse-Sparse Matrix Multiplication.
rusty1s's avatar
rusty1s committed
169
170
    elif isinstance(other, src.__class__):
        assert reduce in ['sum', 'add']
rusty1s's avatar
rusty1s committed
171
172
173
174
175
176
177
178
        assert src.dim() == 2 and other.dim() == 2
        data = SPSPMM.apply(*src.csr(), *other.csr(), src.size(0), src.size(1),
                            other.size(1))
        data = data if len(data) == 3 else data + (None, )
        sparse_size = torch.Size([src.size(0), other.size(1)])
        out = src.__class__(data[0], data[2], sparse_size, is_sorted=True)
        out.storage._rowptr = data[1]
        return out
rusty1s's avatar
rusty1s committed
179
180

    raise ValueError