hgt_sample_cpu.cpp 8.82 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#include "hgt_sample_cpu.h"

#include <random>

edge_t split(const rel_t &rel_type) {
  std::vector<std::string> result(3);
  int start = 0, end = 0;
  for (int i = 0; i < 3; i++) {
    end = rel_type.find(delim, start);
    result[i] = rel_type.substr(start, end - start);
    start = end + 2;
  }
  return std::make_tuple(result[0], result[1], result[2]);
}

void update_budget(
    std::unordered_map<node_t, std::unordered_map<int64_t, float>> *budget_dict,
    const node_t &node_type, //
    const std::vector<int64_t> &sampled_nodes,
    const std::unordered_map<node_t, std::unordered_map<int64_t, int64_t>>
        &global_to_local_node_dict,
    const std::unordered_map<rel_t, edge_t> &rel_to_edge_type,
    const c10::Dict<rel_t, torch::Tensor> &rowptr_dict,
    const c10::Dict<rel_t, torch::Tensor> &col_dict, //
    const bool remove) {

  for (const auto &kv : rowptr_dict) {
    const auto &rel_type = kv.key();
    const auto &edge_type = rel_to_edge_type.at(rel_type);
    const auto &src_node_type = std::get<0>(edge_type);
    const auto &dst_node_type = std::get<2>(edge_type);

    if (node_type != dst_node_type)
      continue;

    const auto &global_to_local_node =
        global_to_local_node_dict.at(src_node_type);
    const auto *rowptr_data = kv.value().data_ptr<int64_t>();
    const auto *col_data = col_dict.at(rel_type).data_ptr<int64_t>();
    auto &budget = (*budget_dict)[src_node_type];

    for (const auto &v : sampled_nodes) {
      const int64_t row_start = rowptr_data[v], row_end = rowptr_data[v + 1];
      if (row_end != row_start) {
        const auto inv_deg = 1.f / float(row_end - row_start);
        for (int64_t j = row_start; j < row_end; j++) {
          const auto w = col_data[j];
          if (global_to_local_node.find(w) == global_to_local_node.end())
            budget[col_data[j]] += inv_deg;
        }
      }
    }
  }

  if (remove) {
    auto &budget = (*budget_dict)[node_type];
    for (const auto &v : sampled_nodes)
      budget.erase(v);
  }
}

std::unordered_set<int64_t>
sample_from(const std::unordered_map<int64_t, float> &budget,
            const int64_t num_samples) {

  // Compute the squared L2 norm:
  auto norm = 0.f;
  for (const auto &kv : budget)
    norm += kv.second * kv.second;

  // Generate `num_samples` sorted random values between `[0., norm)`:
  std::vector<float> samples(num_samples);
  std::uniform_real_distribution<float> dist(0.f, norm);
  std::default_random_engine gen{std::random_device{}()};
  std::generate(std::begin(samples), std::end(samples),
                [&] { return dist(gen); });
  std::sort(samples.begin(), samples.end());

  // Iterate through the budget to compute the cumulative probability
  // `cum_prob[i]` for node `i`. The j-th sample is assigned to node `i` iff
  // `cum_prob[i-1] < samples[j] < cum_prob[i]`.
  // The implementation assigns two iterators on budget and samples,
  // respectively, and then computes the node samples in linear time by
  // alternatingly incrementing the two iterators based on their values.
  std::unordered_set<int64_t> output;
  output.reserve(num_samples);

  auto j = samples.begin();
  auto cum_prob = 0.f;
  for (const auto &kv : budget) {
    cum_prob += kv.second * kv.second;

    // Increment iterator `j` until its value is greater than `cum_prob`:
    while (*j < cum_prob && j != samples.end()) {
      output.insert(kv.first);
      j++;
    }

    // Terminate early in case we have completed the sampling:
    if (j == samples.end())
      break;
  }

  return output;
}

std::tuple<c10::Dict<node_t, torch::Tensor>, c10::Dict<rel_t, torch::Tensor>,
           c10::Dict<rel_t, torch::Tensor>, c10::Dict<rel_t, torch::Tensor>>
hgt_sample_cpu(const c10::Dict<rel_t, torch::Tensor> &rowptr_dict,
               const c10::Dict<rel_t, torch::Tensor> &col_dict,
               const c10::Dict<node_t, torch::Tensor> &input_node_dict,
               const c10::Dict<node_t, std::vector<int64_t>> &num_samples_dict,
               int64_t num_hops) {

  // Create mapping to convert single string relations to edge type triplets:
  std::unordered_map<rel_t, edge_t> rel_to_edge_type;
  for (const auto &kv : rowptr_dict) {
    const auto &rel_type = kv.key();
    rel_to_edge_type[rel_type] = split(rel_type);
  }

  // Initialize various data structures for the sampling process, and add the
  // input nodes to the final sampled output set (line 1):
  std::unordered_map<node_t, std::vector<int64_t>> sampled_nodes_dict;
  std::unordered_map<node_t, std::unordered_map<int64_t, int64_t>>
      global_to_local_node_dict;

  for (const auto &kv : input_node_dict) {
    const auto &node_type = kv.key();
    const auto &input_node = kv.value();
    const auto *input_node_data = input_node.data_ptr<int64_t>();

    auto &sampled_nodes = sampled_nodes_dict[node_type];
    auto &global_to_local_node = global_to_local_node_dict[node_type];

    // Add each origin node to the sampled output nodes:
    for (int64_t i = 0; i < input_node.numel(); i++) {
      const auto v = input_node_data[i];
      sampled_nodes.push_back(v);
      global_to_local_node[v] = i;
    }
  }

  // Update budget after all input nodes have been added to the sampled output
  // set (line 2-5):
  std::unordered_map<node_t, std::unordered_map<int64_t, float>> budget_dict;
  for (const auto &kv : sampled_nodes_dict) {
    update_budget(&budget_dict, kv.first, kv.second, global_to_local_node_dict,
                  rel_to_edge_type, rowptr_dict, col_dict, false);
  }

  // Sample nodes for each node type in each layer (line 6 - 18):
  for (int64_t ell = 0; ell < num_hops; ell++) {
    for (auto &kv : budget_dict) {
      const auto &node_type = kv.first;
      auto &budget = kv.second;
      const auto num_samples = num_samples_dict.at(node_type)[ell];

      // Sample `num_samples` nodes of `node_type` according to the budget
      // (line 9-11):
      const auto samples = sample_from(budget, num_samples);

      // Add sampled nodes to the sampled output set (line 13):
      auto &sampled_nodes = sampled_nodes_dict[node_type];
      auto &global_to_local_node = global_to_local_node_dict[node_type];
      std::vector<int64_t> newly_sampled_nodes;
      newly_sampled_nodes.reserve(samples.size());
      for (const auto &v : samples) {
        sampled_nodes.push_back(v);
        newly_sampled_nodes.push_back(v);
        global_to_local_node[v] = sampled_nodes.size();
      }

      // Add neighbors of newly sampled nodes to the bucket (line 14-15):
      update_budget(&budget_dict, node_type, newly_sampled_nodes,
                    global_to_local_node_dict, rel_to_edge_type, rowptr_dict,
                    col_dict, true);
    }
  }

  // Reconstruct the sampled adjacency matrix among the sampled nodes (line 19):
  c10::Dict<rel_t, torch::Tensor> output_row_dict;
  c10::Dict<rel_t, torch::Tensor> output_col_dict;
  c10::Dict<rel_t, torch::Tensor> output_edge_dict;
  for (const auto &kv : rowptr_dict) {
    const auto &rel_type = kv.key();
    const auto &edge_type = rel_to_edge_type.at(rel_type);
    const auto &src_node_type = std::get<0>(edge_type);
    const auto &dst_node_type = std::get<2>(edge_type);

    const auto *rowptr_data = kv.value().data_ptr<int64_t>();
    const auto *col_data = col_dict.at(rel_type).data_ptr<int64_t>();

    const auto &sampled_dst_nodes = sampled_nodes_dict[dst_node_type];
    const auto &global_to_local_src = global_to_local_node_dict[src_node_type];

    std::vector<int64_t> rows, cols, edges;
    for (int64_t i = 0; i < (int64_t)sampled_dst_nodes.size(); i++) {
      const auto v = sampled_dst_nodes[i];
      const int64_t row_start = rowptr_data[v], row_end = rowptr_data[v + 1];
      for (int64_t j = row_start; j < row_end; j++) {
        const auto w = col_data[j];
        if (global_to_local_src.find(w) != global_to_local_src.end()) {
          rows.push_back(i);
          cols.push_back(global_to_local_src.at(w));
          edges.push_back(j);
        }
      }
    }

    torch::Tensor out;
    out = torch::from_blob((int64_t *)rows.data(), {(int64_t)rows.size()},
                           at::kLong);
    output_row_dict.insert(rel_type, out.clone());
    out = torch::from_blob((int64_t *)cols.data(), {(int64_t)cols.size()},
                           at::kLong);
    output_col_dict.insert(rel_type, out.clone());
    out = torch::from_blob((int64_t *)edges.data(), {(int64_t)edges.size()},
                           at::kLong);
    output_edge_dict.insert(rel_type, out.clone());
  }

  // Generate tensor-valued output node dict (line 20):
  c10::Dict<node_t, torch::Tensor> output_node_dict;
  for (const auto &kv : sampled_nodes_dict) {
    const auto out = torch::from_blob((int64_t *)kv.second.data(),
                                      {(int64_t)kv.second.size()}, at::kLong);
    output_node_dict.insert(kv.first, out.clone());
  }

  return std::make_tuple(output_node_dict, output_row_dict, output_col_dict,
                         output_edge_dict);
}