spmm.cpp 8.37 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#include <torch/extension.h>

#include "compat.h"

#define CHECK_CPU(x) AT_ASSERTM(!x.type().is_cuda(), #x " must be CPU tensor")

enum ReductionType { SUM, MEAN, MIN, MAX };

const std::map<std::string, ReductionType> reduce2REDUCE = {
    {"sum", SUM}, {"add", SUM}, {"mean", MEAN}, {"min", MIN}, {"max", MAX},
};

#define AT_DISPATCH_REDUCTION_TYPES(reduce, ...)                               \
  [&] {                                                                        \
    switch (reduce2REDUCE.at(reduce)) {                                        \
    case SUM: {                                                                \
      const ReductionType REDUCE = SUM;                                        \
      return __VA_ARGS__();                                                    \
    }                                                                          \
    case MEAN: {                                                               \
      const ReductionType REDUCE = MEAN;                                       \
      return __VA_ARGS__();                                                    \
    }                                                                          \
    case MIN: {                                                                \
      const ReductionType REDUCE = MIN;                                        \
      return __VA_ARGS__();                                                    \
    }                                                                          \
    case MAX: {                                                                \
      const ReductionType REDUCE = MAX;                                        \
      return __VA_ARGS__();                                                    \
    }                                                                          \
    }                                                                          \
  }()

#define AT_DISPATCH_HAS_VAL(value_opt, ...)                                    \
  [&] {                                                                        \
    switch (value_opt.has_value()) {                                           \
    case true: {                                                               \
      const bool HAS_VAL = true;                                               \
      return __VA_ARGS__();                                                    \
    }                                                                          \
    case false: {                                                              \
      const bool HAS_VAL = false;                                              \
      return __VA_ARGS__();                                                    \
    }                                                                          \
    }                                                                          \
  }()

template <typename scalar_t, ReductionType REDUCE> struct Reducer {
  static inline scalar_t init() {
    if (REDUCE == MIN) {
      return std::numeric_limits<scalar_t>::max();
    } else if (REDUCE == MAX) {
      return std::numeric_limits<scalar_t>::lowest();
    } else {
      return (scalar_t)0;
    }
  }

  static inline void update(scalar_t *val, scalar_t new_val, int64_t *arg,
                            int64_t new_arg) {
    if (REDUCE == SUM || REDUCE == MEAN) {
      *val = *val + new_val;
    } else if ((REDUCE == MIN && new_val < *val) ||
               (REDUCE == MAX && new_val > *val)) {
      *val = new_val;
      *arg = new_arg;
    }
  }

  static inline void write(scalar_t *address, scalar_t val,
                           int64_t *arg_address, int64_t arg, int count) {
    if (REDUCE == SUM) {
      *address = val;
    } else if (REDUCE == MEAN) {
      *address = val / (count > 0 ? count : (scalar_t)1);
    } else if (REDUCE == MIN || REDUCE == MAX) {
      if (count > 0) {
        *address = val;
        *arg_address = arg;
      } else {
        *address = (scalar_t)0;
      }
    }
  }
};

std::tuple<at::Tensor, at::optional<at::Tensor>>
spmm(at::Tensor rowptr, at::Tensor col, at::optional<at::Tensor> value_opt,
     at::Tensor mat, std::string reduce) {
  CHECK_CPU(rowptr);
  CHECK_CPU(col);
  if (value_opt.has_value())
    CHECK_CPU(value_opt.value());
  CHECK_CPU(mat);

  mat = mat.contiguous();

  AT_ASSERTM(rowptr.dim() == 1, "Input mismatch");
  AT_ASSERTM(col.dim() == 1, "Input mismatch");
  if (value_opt.has_value())
    AT_ASSERTM(value_opt.value().dim() == 1);
  AT_ASSERTM(mat.dim() >= 2, "Input mismatch");

  auto sizes = mat.sizes().vec();
  sizes[mat.dim() - 2] = rowptr.numel() - 1;
  auto out = at::empty(sizes, mat.options());

  at::optional<at::Tensor> arg_out = at::nullopt;
  int64_t *arg_out_data = nullptr;
  if (reduce2REDUCE.at(reduce) == MIN || reduce2REDUCE.at(reduce) == MAX) {
rusty1s's avatar
rusty1s committed
112
    arg_out = at::full_like(out, -1, rowptr.options());
113
114
115
116
117
118
    arg_out_data = arg_out.value().DATA_PTR<int64_t>();
  }

  auto rowptr_data = rowptr.DATA_PTR<int64_t>();
  auto col_data = col.DATA_PTR<int64_t>();

rusty1s's avatar
rusty1s committed
119
120
121
122
  auto N = rowptr.numel() - 1;
  auto M = mat.size(-2);
  auto K = mat.size(-1);
  auto B = mat.numel() / (M * K);
123
124
125

  AT_DISPATCH_ALL_TYPES(mat.scalar_type(), "spmm", [&] {
    scalar_t *value_data = nullptr;
rusty1s's avatar
rusty1s committed
126
127
    auto mat_data = mat.DATA_PTR<scalar_t>();
    auto out_data = out.DATA_PTR<scalar_t>();
128
129
130

    scalar_t val;
    std::vector<scalar_t> vals(K);
rusty1s's avatar
rusty1s committed
131
    int64_t row_start, row_end, c;
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    std::vector<int64_t> args(K);

    AT_DISPATCH_REDUCTION_TYPES(reduce, [&] {
      AT_DISPATCH_HAS_VAL(value_opt, [&] {
        if (HAS_VAL) {
          value_data = value_opt.value().DATA_PTR<scalar_t>();
        }

        for (int b = 0; b < B; b++) {
          for (int n = 0; n < N; n++) {
            row_start = rowptr_data[n], row_end = rowptr_data[n + 1];

            for (int k = 0; k < K; k++)
              vals[k] = Reducer<scalar_t, REDUCE>::init();

            int offset = b * M * K;
            for (int e = row_start; e < row_end; e++) {
rusty1s's avatar
rusty1s committed
149
              c = col_data[e];
150
151
152
153
154
              if (HAS_VAL)
                val = value_data[e];
              for (int k = 0; k < K; k++) {
                if (HAS_VAL)
                  Reducer<scalar_t, REDUCE>::update(
rusty1s's avatar
rusty1s committed
155
156
                      &vals[k], val * mat_data[offset + c * K + k], &args[k],
                      e);
157
158
                else
                  Reducer<scalar_t, REDUCE>::update(
rusty1s's avatar
rusty1s committed
159
                      &vals[k], mat_data[offset + c * K + k], &args[k], e);
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
              }
            }
            offset = b * N * K + n * K;
            for (int k = 0; k < K; k++)
              Reducer<scalar_t, REDUCE>::write(out_data + offset + k, vals[k],
                                               arg_out_data + offset + k,
                                               args[k], row_end - row_start);
          }
        }
      });
    });
  });

  return std::make_tuple(out, arg_out);
}

rusty1s's avatar
rusty1s committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
at::Tensor spmm_val_bw(at::Tensor rowptr, at::Tensor col, at::Tensor mat,
                       at::Tensor grad, std::string reduce) {
  CHECK_CPU(rowptr);
  CHECK_CPU(col);
  CHECK_CPU(mat);
  CHECK_CPU(grad);

  mat = mat.contiguous();

  auto M = rowptr.numel() - 1;
  auto N = mat.size(-2);
  auto K = mat.size(-1);
  auto B = mat.numel() / (N * K);

  auto out = at::zeros(col.sizes(), grad.options());

  auto rowptr_data = rowptr.DATA_PTR<int64_t>();
  auto col_data = col.DATA_PTR<int64_t>();
  AT_DISPATCH_ALL_TYPES(mat.scalar_type(), "spmm_val_bw", [&] {
    auto mat_data = mat.DATA_PTR<scalar_t>();
    auto grad_data = grad.DATA_PTR<scalar_t>();
    auto out_data = out.DATA_PTR<scalar_t>();

    scalar_t val;
    int64_t row_start, row_end, c;
    AT_DISPATCH_REDUCTION_TYPES(reduce, [&] {
      for (int b = 0; b < B; b++) {
        for (int m = 0; m < M; m++) {
          row_start = rowptr_data[m], row_end = rowptr_data[m + 1];

          for (int e = row_start; e < row_end; e++) {
            c = col_data[e], val = (scalar_t)0;
            for (int k = 0; k < K; k++) {
              val += mat_data[b * N * K + c * K + k] *
                     grad_data[b * M * K + m * K + k];
            }
            if (REDUCE == MEAN)
              val = val / (scalar_t)(row_end - row_start);
            out_data[e] += val;
          }
        }
      }
    });
  });

  return out;
}

224
225
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  m.def("spmm", &spmm, "Sparse-Dense Matrix Multiplication (CPU)");
rusty1s's avatar
rusty1s committed
226
227
  m.def("spmm_val_bw", &spmm_val_bw,
        "Sparse-Dense Matrix Multiplication Value Backward (CPU)");
228
}