sample_cpu.cpp 3.46 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#include "sample_cpu.h"

#include "utils.h"

// Returns `rowptr`, `col`, `n_id`, `e_id`,
std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>
sample_adj_cpu(torch::Tensor rowptr, torch::Tensor col, torch::Tensor rowcount,
               torch::Tensor idx, int64_t num_neighbors, bool replace) {
  CHECK_CPU(rowptr);
  CHECK_CPU(col);
  CHECK_CPU(idx);
  CHECK_INPUT(idx.dim() == 1);

  auto rowptr_data = rowptr.data_ptr<int64_t>();
  auto col_data = col.data_ptr<int64_t>();
  auto rowcount_data = rowcount.data_ptr<int64_t>();
  auto idx_data = idx.data_ptr<int64_t>();

  auto out_rowptr = torch::empty(idx.size(0) + 1, rowptr.options());
  auto out_rowptr_data = out_rowptr.data_ptr<int64_t>();
  out_rowptr_data[0] = 0;

  std::vector<int64_t> cols;
  std::vector<int64_t> n_ids;
  std::unordered_map<int64_t, int64_t> n_id_map;
  std::vector<int64_t> e_ids;

  int64_t i;
  for (int64_t n = 0; n < idx.size(0); n++) {
    i = idx_data[n];
    n_id_map[i] = n;
    n_ids.push_back(i);
  }

rusty1s's avatar
rusty1s committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
  if (num_neighbors < 0) { // No sampling ======================================

    int64_t r, c, e, offset = 0;
    for (int64_t i = 0; i < idx.size(0); i++) {
      r = idx_data[i];

      for (int64_t j = 0; j < rowcount_data[r]; j++) {
        e = rowptr_data[r] + j;
        c = col_data[e];

        if (n_id_map.count(c) == 0) {
          n_id_map[c] = n_ids.size();
          n_ids.push_back(c);
        }

        cols.push_back(n_id_map[c]);
        e_ids.push_back(e);
      }
      offset = cols.size();
      out_rowptr_data[i + 1] = offset;
    }
  }

  else if (replace) { // Sample with replacement ===============================
rusty1s's avatar
rusty1s committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

    int64_t r, c, e, offset = 0;
    for (int64_t i = 0; i < idx.size(0); i++) {
      r = idx_data[i];

      for (int64_t j = 0; j < num_neighbors; j++) {
        e = rowptr_data[r] + rand() % rowcount_data[r];
        c = col_data[e];

        if (n_id_map.count(c) == 0) {
          n_id_map[c] = n_ids.size();
          n_ids.push_back(c);
        }

        c = n_id_map[c];
        if (std::find(cols.begin() + offset, cols.end(), c) == cols.end()) {
          cols.push_back(c);
          e_ids.push_back(e);
        }
      }
      offset = cols.size();
      out_rowptr_data[i + 1] = offset;
    }

  } else { // Sample without replacement via Robert Floyd algorithm ============

    int64_t r, c, e, rc, offset = 0;
    for (int64_t i = 0; i < idx.size(0); i++) {
      r = idx_data[i];
      rc = rowcount_data[r];

      std::unordered_set<int64_t> perm;
      if (rc <= num_neighbors) {
        for (int64_t x = 0; x < rc; x++) {
          perm.insert(x);
        }
      } else {
        for (int64_t x = rc - std::min(rc, num_neighbors); x < rc; x++) {
          if (!perm.insert(rand() % x).second) {
            perm.insert(x);
          }
        }
      }

      for (const int64_t &p : perm) {
        e = rowptr_data[r] + p;
        c = col_data[e];

        if (n_id_map.count(c) == 0) {
          n_id_map[c] = n_ids.size();
          n_ids.push_back(c);
        }

        cols.push_back(n_id_map[c]);
        e_ids.push_back(e);
      }
      offset = cols.size();
      out_rowptr_data[i + 1] = offset;
    }
  }

  int64_t n_len = n_ids.size(), e_len = cols.size();
  col = torch::from_blob(cols.data(), {e_len}, col.options()).clone();
  auto n_id = torch::from_blob(n_ids.data(), {n_len}, col.options()).clone();
  auto e_id = torch::from_blob(e_ids.data(), {e_len}, col.options()).clone();

  return std::make_tuple(out_rowptr, col, n_id, e_id);
}