spspmm_cuda.cu 6 KB
Newer Older
limm's avatar
limm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#include "spspmm_cuda.h"

#include <ATen/cuda/CUDAContext.h>
#include <cusparse.h>

#include "utils.cuh"

#define AT_DISPATCH_CUSPARSE_TYPES(TYPE, ...)                                  \
  [&] {                                                                        \
    switch (TYPE) {                                                            \
    case torch::ScalarType::Float: {                                           \
      using scalar_t = float;                                                  \
      const auto &cusparsecsrgemm2_bufferSizeExt =                             \
          cusparseScsrgemm2_bufferSizeExt;                                     \
      const auto &cusparsecsrgemm2 = cusparseScsrgemm2;                        \
      return __VA_ARGS__();                                                    \
    }                                                                          \
    case torch::ScalarType::Double: {                                          \
      using scalar_t = double;                                                 \
      const auto &cusparsecsrgemm2_bufferSizeExt =                             \
          cusparseDcsrgemm2_bufferSizeExt;                                     \
      const auto &cusparsecsrgemm2 = cusparseDcsrgemm2;                        \
      return __VA_ARGS__();                                                    \
    }                                                                          \
    default:                                                                   \
      AT_ERROR("Not implemented for '", toString(TYPE), "'");                  \
    }                                                                          \
  }()

std::tuple<torch::Tensor, torch::Tensor, torch::optional<torch::Tensor>>
spspmm_cuda(torch::Tensor rowptrA, torch::Tensor colA,
            torch::optional<torch::Tensor> optional_valueA,
            torch::Tensor rowptrB, torch::Tensor colB,
            torch::optional<torch::Tensor> optional_valueB, int64_t K,
            std::string reduce) {

  CHECK_CUDA(rowptrA);
  CHECK_CUDA(colA);
  if (optional_valueA.has_value())
    CHECK_CUDA(optional_valueA.value());
  CHECK_CUDA(rowptrB);
  CHECK_CUDA(colB);
  if (optional_valueB.has_value())
    CHECK_CUDA(optional_valueB.value());
  cudaSetDevice(rowptrA.get_device());

  CHECK_INPUT(rowptrA.dim() == 1);
  CHECK_INPUT(colA.dim() == 1);
  if (optional_valueA.has_value()) {
    CHECK_INPUT(optional_valueA.value().dim() == 1);
    CHECK_INPUT(optional_valueA.value().size(0) == colA.size(0));
  }
  CHECK_INPUT(rowptrB.dim() == 1);
  CHECK_INPUT(colB.dim() == 1);
  if (optional_valueB.has_value()) {
    CHECK_INPUT(optional_valueB.value().dim() == 1);
    CHECK_INPUT(optional_valueB.value().size(0) == colB.size(0));
  }

  if (!optional_valueA.has_value() && optional_valueB.has_value())
    optional_valueA =
        torch::ones({colA.numel()}, optional_valueB.value().options());

  if (!optional_valueB.has_value() && optional_valueA.has_value())
    optional_valueB =
        torch::ones({colB.numel()}, optional_valueA.value().options());

  auto scalar_type = torch::ScalarType::Float;
  if (optional_valueA.has_value())
    scalar_type = optional_valueA.value().scalar_type();

  auto handle = at::cuda::getCurrentCUDASparseHandle();

  cusparseMatDescr_t descr;
  cusparseCreateMatDescr(&descr);

  rowptrA = rowptrA.toType(torch::kInt);
  colA = colA.toType(torch::kInt);
  rowptrB = rowptrB.toType(torch::kInt);
  colB = colB.toType(torch::kInt);

  int64_t M = rowptrA.numel() - 1, N = rowptrB.numel() - 1;
  auto rowptrA_data = rowptrA.data_ptr<int>();
  auto colA_data = colA.data_ptr<int>();
  auto rowptrB_data = rowptrB.data_ptr<int>();
  auto colB_data = colB.data_ptr<int>();

  torch::Tensor rowptrC, colC;
  torch::optional<torch::Tensor> optional_valueC = torch::nullopt;

  int nnzC;
  int *nnzTotalDevHostPtr = &nnzC;

  // Step 1: Create an opaque structure.
  csrgemm2Info_t info = NULL;
  cusparseCreateCsrgemm2Info(&info);

  // Step 2: Allocate buffer for `csrgemm2Nnz` and `csrgemm2`.
  size_t bufferSize;
  AT_DISPATCH_CUSPARSE_TYPES(scalar_type, [&] {
    scalar_t alpha = (scalar_t)1.0;
    cusparsecsrgemm2_bufferSizeExt(handle, M, N, K, &alpha, descr, colA.numel(),
                                   rowptrA_data, colA_data, descr, colB.numel(),
                                   rowptrB_data, colB_data, NULL, descr, 0,
                                   NULL, NULL, info, &bufferSize);

    void *buffer = NULL;
    cudaMalloc(&buffer, bufferSize);

    // Step 3: Compute CSR row pointer.
    rowptrC = torch::empty({M + 1}, rowptrA.options());
    auto rowptrC_data = rowptrC.data_ptr<int>();
    cusparseXcsrgemm2Nnz(handle, M, N, K, descr, colA.numel(), rowptrA_data,
                         colA_data, descr, colB.numel(), rowptrB_data,
                         colB_data, descr, 0, NULL, NULL, descr, rowptrC_data,
                         nnzTotalDevHostPtr, info, buffer);

    // Step 4: Compute CSR entries.
    colC = torch::empty({nnzC}, rowptrC.options());
    auto colC_data = colC.data_ptr<int>();

    if (optional_valueA.has_value())
      optional_valueC = torch::empty({nnzC}, optional_valueA.value().options());

    scalar_t *valA_data = NULL, *valB_data = NULL, *valC_data = NULL;
    if (optional_valueA.has_value()) {
      valA_data = optional_valueA.value().data_ptr<scalar_t>();
      valB_data = optional_valueB.value().data_ptr<scalar_t>();
      valC_data = optional_valueC.value().data_ptr<scalar_t>();
    }

    cusparsecsrgemm2(handle, M, N, K, &alpha, descr, colA.numel(), valA_data,
                     rowptrA_data, colA_data, descr, colB.numel(), valB_data,
                     rowptrB_data, colB_data, NULL, descr, 0, NULL, NULL, NULL,
                     descr, valC_data, rowptrC_data, colC_data, info, buffer);

    cudaFree(buffer);
  });

  // Step 5: Destroy the opaque structure.
  cusparseDestroyCsrgemm2Info(info);

  rowptrC = rowptrC.toType(torch::kLong);
  colC = colC.toType(torch::kLong);

  return std::make_tuple(rowptrC, colC, optional_valueC);
}