neighbor_sample_cpu.cpp 12.7 KB
Newer Older
quyuanhao123's avatar
quyuanhao123 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
#include "neighbor_sample_cpu.h"

#include "utils.h"

#ifdef _WIN32
#include <process.h>
#endif

using namespace std;

namespace {

template <bool replace, bool directed>
tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>
sample(const torch::Tensor &colptr, const torch::Tensor &row,
       const torch::Tensor &input_node, const vector<int64_t> num_neighbors) {

  srand(time(NULL) + 1000 * getpid()); // Initialize random seed.

  // Initialize some data structures for the sampling process:
  vector<int64_t> samples;
  unordered_map<int64_t, int64_t> to_local_node;

  auto *colptr_data = colptr.data_ptr<int64_t>();
  auto *row_data = row.data_ptr<int64_t>();
  auto *input_node_data = input_node.data_ptr<int64_t>();

  for (int64_t i = 0; i < input_node.numel(); i++) {
    const auto &v = input_node_data[i];
    samples.push_back(v);
    to_local_node.insert({v, i});
  }

  vector<int64_t> rows, cols, edges;

  int64_t begin = 0, end = samples.size();
  for (int64_t ell = 0; ell < (int64_t)num_neighbors.size(); ell++) {
    const auto &num_samples = num_neighbors[ell];
    for (int64_t i = begin; i < end; i++) {
      const auto &w = samples[i];
      const auto &col_start = colptr_data[w];
      const auto &col_end = colptr_data[w + 1];
      const auto col_count = col_end - col_start;

      if (col_count == 0)
        continue;

      if ((num_samples < 0) || (!replace && (num_samples >= col_count))) {
        for (int64_t offset = col_start; offset < col_end; offset++) {
          const int64_t &v = row_data[offset];
          const auto res = to_local_node.insert({v, samples.size()});
          if (res.second)
            samples.push_back(v);
          if (directed) {
            cols.push_back(i);
            rows.push_back(res.first->second);
            edges.push_back(offset);
          }
        }
      } else if (replace) {
        for (int64_t j = 0; j < num_samples; j++) {
          const int64_t offset = col_start + rand() % col_count;
          const int64_t &v = row_data[offset];
          const auto res = to_local_node.insert({v, samples.size()});
          if (res.second)
            samples.push_back(v);
          if (directed) {
            cols.push_back(i);
            rows.push_back(res.first->second);
            edges.push_back(offset);
          }
        }
      } else {
        unordered_set<int64_t> rnd_indices;
        for (int64_t j = col_count - num_samples; j < col_count; j++) {
          int64_t rnd = rand() % j;
          if (!rnd_indices.insert(rnd).second) {
            rnd = j;
            rnd_indices.insert(j);
          }
          const int64_t offset = col_start + rnd;
          const int64_t &v = row_data[offset];
          const auto res = to_local_node.insert({v, samples.size()});
          if (res.second)
            samples.push_back(v);
          if (directed) {
            cols.push_back(i);
            rows.push_back(res.first->second);
            edges.push_back(offset);
          }
        }
      }
    }
    begin = end, end = samples.size();
  }

  if (!directed) {
    unordered_map<int64_t, int64_t>::iterator iter;
    for (int64_t i = 0; i < (int64_t)samples.size(); i++) {
      const auto &w = samples[i];
      const auto &col_start = colptr_data[w];
      const auto &col_end = colptr_data[w + 1];
      for (int64_t offset = col_start; offset < col_end; offset++) {
        const auto &v = row_data[offset];
        iter = to_local_node.find(v);
        if (iter != to_local_node.end()) {
          rows.push_back(iter->second);
          cols.push_back(i);
          edges.push_back(offset);
        }
      }
    }
  }

  return make_tuple(from_vector<int64_t>(samples), from_vector<int64_t>(rows),
                    from_vector<int64_t>(cols), from_vector<int64_t>(edges));
}

template <bool replace, bool directed>
tuple<c10::Dict<node_t, torch::Tensor>, c10::Dict<rel_t, torch::Tensor>,
      c10::Dict<rel_t, torch::Tensor>, c10::Dict<rel_t, torch::Tensor>>
hetero_sample(const vector<node_t> &node_types,
              const vector<edge_t> &edge_types,
              const c10::Dict<rel_t, torch::Tensor> &colptr_dict,
              const c10::Dict<rel_t, torch::Tensor> &row_dict,
              const c10::Dict<node_t, torch::Tensor> &input_node_dict,
              const c10::Dict<rel_t, vector<int64_t>> &num_neighbors_dict,
              const int64_t num_hops) {

  srand(time(NULL) + 1000 * getpid()); // Initialize random seed.

  // Create a mapping to convert single string relations to edge type triplets:
  unordered_map<rel_t, edge_t> to_edge_type;
  for (const auto &k : edge_types)
    to_edge_type[get<0>(k) + "__" + get<1>(k) + "__" + get<2>(k)] = k;

  // Initialize some data structures for the sampling process:
  unordered_map<node_t, vector<int64_t>> samples_dict;
  unordered_map<node_t, unordered_map<int64_t, int64_t>> to_local_node_dict;
  for (const auto &node_type : node_types) {
    samples_dict[node_type];
    to_local_node_dict[node_type];
  }

  unordered_map<rel_t, vector<int64_t>> rows_dict, cols_dict, edges_dict;
  for (const auto &kv : colptr_dict) {
    const auto &rel_type = kv.key();
    rows_dict[rel_type];
    cols_dict[rel_type];
    edges_dict[rel_type];
  }

  // Add the input nodes to the output nodes:
  for (const auto &kv : input_node_dict) {
    const auto &node_type = kv.key();
    const torch::Tensor &input_node = kv.value();
    const auto *input_node_data = input_node.data_ptr<int64_t>();

    auto &samples = samples_dict.at(node_type);
    auto &to_local_node = to_local_node_dict.at(node_type);
    for (int64_t i = 0; i < input_node.numel(); i++) {
      const auto &v = input_node_data[i];
      samples.push_back(v);
      to_local_node.insert({v, i});
    }
  }

  unordered_map<node_t, pair<int64_t, int64_t>> slice_dict;
  for (const auto &kv : samples_dict)
    slice_dict[kv.first] = {0, kv.second.size()};

  for (int64_t ell = 0; ell < num_hops; ell++) {
    for (const auto &kv : num_neighbors_dict) {
      const auto &rel_type = kv.key();
      const auto &edge_type = to_edge_type[rel_type];
      const auto &src_node_type = get<0>(edge_type);
      const auto &dst_node_type = get<2>(edge_type);
      const auto num_samples = kv.value()[ell];
      const auto &dst_samples = samples_dict.at(dst_node_type);
      auto &src_samples = samples_dict.at(src_node_type);
      auto &to_local_src_node = to_local_node_dict.at(src_node_type);

      const auto *colptr_data = ((torch::Tensor)colptr_dict.at(rel_type)).data_ptr<int64_t>();
      const auto *row_data = ((torch::Tensor)row_dict.at(rel_type)).data_ptr<int64_t>();

      auto &rows = rows_dict.at(rel_type);
      auto &cols = cols_dict.at(rel_type);
      auto &edges = edges_dict.at(rel_type);

      const auto &begin = slice_dict.at(dst_node_type).first;
      const auto &end = slice_dict.at(dst_node_type).second;
      for (int64_t i = begin; i < end; i++) {
        const auto &w = dst_samples[i];
        const auto &col_start = colptr_data[w];
        const auto &col_end = colptr_data[w + 1];
        const auto col_count = col_end - col_start;

        if (col_count == 0)
          continue;

        if ((num_samples < 0) || (!replace && (num_samples >= col_count))) {
          for (int64_t offset = col_start; offset < col_end; offset++) {
            const int64_t &v = row_data[offset];
            const auto res = to_local_src_node.insert({v, src_samples.size()});
            if (res.second)
              src_samples.push_back(v);
            if (directed) {
              cols.push_back(i);
              rows.push_back(res.first->second);
              edges.push_back(offset);
            }
          }
        } else if (replace) {
          for (int64_t j = 0; j < num_samples; j++) {
            const int64_t offset = col_start + rand() % col_count;
            const int64_t &v = row_data[offset];
            const auto res = to_local_src_node.insert({v, src_samples.size()});
            if (res.second)
              src_samples.push_back(v);
            if (directed) {
              cols.push_back(i);
              rows.push_back(res.first->second);
              edges.push_back(offset);
            }
          }
        } else {
          unordered_set<int64_t> rnd_indices;
          for (int64_t j = col_count - num_samples; j < col_count; j++) {
            int64_t rnd = rand() % j;
            if (!rnd_indices.insert(rnd).second) {
              rnd = j;
              rnd_indices.insert(j);
            }
            const int64_t offset = col_start + rnd;
            const int64_t &v = row_data[offset];
            const auto res = to_local_src_node.insert({v, src_samples.size()});
            if (res.second)
              src_samples.push_back(v);
            if (directed) {
              cols.push_back(i);
              rows.push_back(res.first->second);
              edges.push_back(offset);
            }
          }
        }
      }
    }

    for (const auto &kv : samples_dict) {
      slice_dict[kv.first] = {slice_dict.at(kv.first).second, kv.second.size()};
    }
  }

  if (!directed) { // Construct the subgraph among the sampled nodes:
    unordered_map<int64_t, int64_t>::iterator iter;
    for (const auto &kv : colptr_dict) {
      const auto &rel_type = kv.key();
      const auto &edge_type = to_edge_type[rel_type];
      const auto &src_node_type = get<0>(edge_type);
      const auto &dst_node_type = get<2>(edge_type);
      const auto &dst_samples = samples_dict.at(dst_node_type);
      auto &to_local_src_node = to_local_node_dict.at(src_node_type);

      const auto *colptr_data = ((torch::Tensor)kv.value()).data_ptr<int64_t>();
      const auto *row_data = ((torch::Tensor)row_dict.at(rel_type)).data_ptr<int64_t>();

      auto &rows = rows_dict.at(rel_type);
      auto &cols = cols_dict.at(rel_type);
      auto &edges = edges_dict.at(rel_type);

      for (int64_t i = 0; i < (int64_t)dst_samples.size(); i++) {
        const auto &w = dst_samples[i];
        const auto &col_start = colptr_data[w];
        const auto &col_end = colptr_data[w + 1];
        for (int64_t offset = col_start; offset < col_end; offset++) {
          const auto &v = row_data[offset];
          iter = to_local_src_node.find(v);
          if (iter != to_local_src_node.end()) {
            rows.push_back(iter->second);
            cols.push_back(i);
            edges.push_back(offset);
          }
        }
      }
    }
  }

  return make_tuple(from_vector<node_t, int64_t>(samples_dict),
                    from_vector<rel_t, int64_t>(rows_dict),
                    from_vector<rel_t, int64_t>(cols_dict),
                    from_vector<rel_t, int64_t>(edges_dict));
}

} // namespace

tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>
neighbor_sample_cpu(const torch::Tensor &colptr, const torch::Tensor &row,
                    const torch::Tensor &input_node,
                    const vector<int64_t> num_neighbors, const bool replace,
                    const bool directed) {

  if (replace && directed) {
    return sample<true, true>(colptr, row, input_node, num_neighbors);
  } else if (replace && !directed) {
    return sample<true, false>(colptr, row, input_node, num_neighbors);
  } else if (!replace && directed) {
    return sample<false, true>(colptr, row, input_node, num_neighbors);
  } else {
    return sample<false, false>(colptr, row, input_node, num_neighbors);
  }
}

tuple<c10::Dict<node_t, torch::Tensor>, c10::Dict<rel_t, torch::Tensor>,
      c10::Dict<rel_t, torch::Tensor>, c10::Dict<rel_t, torch::Tensor>>
hetero_neighbor_sample_cpu(
    const vector<node_t> &node_types, const vector<edge_t> &edge_types,
    const c10::Dict<rel_t, torch::Tensor> &colptr_dict,
    const c10::Dict<rel_t, torch::Tensor> &row_dict,
    const c10::Dict<node_t, torch::Tensor> &input_node_dict,
    const c10::Dict<rel_t, vector<int64_t>> &num_neighbors_dict,
    const int64_t num_hops, const bool replace, const bool directed) {

  if (replace && directed) {
    return hetero_sample<true, true>(node_types, edge_types, colptr_dict,
                                     row_dict, input_node_dict,
                                     num_neighbors_dict, num_hops);
  } else if (replace && !directed) {
    return hetero_sample<true, false>(node_types, edge_types, colptr_dict,
                                      row_dict, input_node_dict,
                                      num_neighbors_dict, num_hops);
  } else if (!replace && directed) {
    return hetero_sample<false, true>(node_types, edge_types, colptr_dict,
                                      row_dict, input_node_dict,
                                      num_neighbors_dict, num_hops);
  } else {
    return hetero_sample<false, false>(node_types, edge_types, colptr_dict,
                                       row_dict, input_node_dict,
                                       num_neighbors_dict, num_hops);
  }
}