relabel_cpu.cpp 4.08 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#include "relabel_cpu.h"

#include "utils.h"

std::tuple<torch::Tensor, torch::Tensor> relabel_cpu(torch::Tensor col,
                                                     torch::Tensor idx) {

  CHECK_CPU(col);
  CHECK_CPU(idx);
  CHECK_INPUT(idx.dim() == 1);

  auto col_data = col.data_ptr<int64_t>();
  auto idx_data = idx.data_ptr<int64_t>();

  std::vector<int64_t> cols;
  std::vector<int64_t> n_ids;
  std::unordered_map<int64_t, int64_t> n_id_map;

  int64_t i;
  for (int64_t n = 0; n < idx.size(0); n++) {
    i = idx_data[n];
    n_id_map[i] = n;
    n_ids.push_back(i);
  }

  int64_t c;
  for (int64_t e = 0; e < col.size(0); e++) {
    c = col_data[e];

    if (n_id_map.count(c) == 0) {
      n_id_map[c] = n_ids.size();
      n_ids.push_back(c);
    }

    cols.push_back(n_id_map[c]);
  }

  int64_t n_len = n_ids.size(), e_len = cols.size();
  auto out_col = torch::from_blob(cols.data(), {e_len}, col.options()).clone();
  auto out_idx = torch::from_blob(n_ids.data(), {n_len}, col.options()).clone();

  return std::make_tuple(out_col, out_idx);
}
rusty1s's avatar
rusty1s committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

std::tuple<torch::Tensor, torch::Tensor, torch::optional<torch::Tensor>,
           torch::Tensor>
relabel_one_hop_cpu(torch::Tensor rowptr, torch::Tensor col,
                    torch::optional<torch::Tensor> optional_value,
                    torch::Tensor idx) {

  CHECK_CPU(rowptr);
  CHECK_CPU(col);
  if (optional_value.has_value()) {
    CHECK_CPU(optional_value.value());
    CHECK_INPUT(optional_value.value().dim() == 1);
  }
  CHECK_CPU(idx);

  auto rowptr_data = rowptr.data_ptr<int64_t>();
  auto col_data = col.data_ptr<int64_t>();
  auto idx_data = idx.data_ptr<int64_t>();

  std::vector<int64_t> n_ids;
  std::unordered_map<int64_t, int64_t> n_id_map;
  std::unordered_map<int64_t, int64_t>::iterator it;

  auto out_rowptr = torch::empty(idx.numel() + 1, rowptr.options());
  auto out_rowptr_data = out_rowptr.data_ptr<int64_t>();

  out_rowptr_data[0] = 0;
  int64_t v, w, c, row_start, row_end, offset = 0;
  for (int64_t i = 0; i < idx.numel(); i++) {
    v = idx_data[i];
    n_id_map[i] = v;
    offset += rowptr_data[v + 1] - rowptr_data[v];
    out_rowptr_data[i + 1] = offset;
  }

  auto out_col = torch::empty(offset, col.options());
  auto out_col_data = out_col.data_ptr<int64_t>();

  torch::optional<torch::Tensor> out_value = torch::nullopt;
  if (optional_value.has_value()) {
    out_value = torch::empty(offset, optional_value.value().options());

    AT_DISPATCH_ALL_TYPES(optional_value.value().scalar_type(), "relabel", [&] {
      auto value_data = optional_value.value().data_ptr<scalar_t>();
      auto out_value_data = out_value.value().data_ptr<scalar_t>();

      offset = 0;
      for (int64_t i = 0; i < idx.numel(); i++) {
        v = idx_data[i];
        row_start = rowptr_data[v], row_end = rowptr_data[v + 1];

        for (int64_t j = row_start; j < row_end; j++) {
          w = col_data[j];
          it = n_id_map.find(w);
          if (it == n_id_map.end()) {
            c = idx.numel() + n_ids.size();
            n_id_map[w] = c;
            n_ids.push_back(w);
            out_col_data[offset] = c;
          } else {
            out_col_data[offset] = it->second;
          }
          out_value_data[offset] = value_data[j];
          offset++;
        }
      }
    });

  } else {
    offset = 0;
    for (int64_t i = 0; i < idx.numel(); i++) {
      v = idx_data[i];
      row_start = rowptr_data[v], row_end = rowptr_data[v + 1];

      for (int64_t j = row_start; j < row_end; j++) {
        w = col_data[j];
        it = n_id_map.find(w);
        if (it == n_id_map.end()) {
          c = idx.numel() + n_ids.size();
          n_id_map[w] = c;
          n_ids.push_back(w);
          out_col_data[offset] = c;
        } else {
          out_col_data[offset] = it->second;
        }
        offset++;
      }
    }
  }

  out_rowptr =
      torch::cat({out_rowptr, torch::full({(int64_t)n_ids.size()},
                                          out_col.numel(), rowptr.options())});

  idx = torch::cat(
      {idx, torch::from_blob(n_ids.data(), {(int64_t)n_ids.size()})});

  return std::make_tuple(out_rowptr, out_col, out_value, idx);
}