test_padding.py 3.04 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
from itertools import product

import pytest
import torch
rusty1s's avatar
rusty1s committed
5
from torch_sparse import SparseTensor, padded_index_select
rusty1s's avatar
rusty1s committed
6
7
8
9
10
11
12
13
14
15
16
17
18

from .utils import grad_dtypes, tensor

devices = [torch.device('cuda')]


@pytest.mark.parametrize('dtype,device', product(grad_dtypes, devices))
def test_padded_index_select(dtype, device):
    row = torch.tensor([0, 0, 0, 0, 1, 1, 1, 2, 2, 3])
    col = torch.tensor([0, 1, 2, 3, 0, 2, 3, 1, 3, 2])
    adj = SparseTensor(row=row, col=col).to(device)
    binptr = torch.tensor([0, 3, 5], device=device)

rusty1s's avatar
rusty1s committed
19
    data = adj.padded_index(binptr)
rusty1s's avatar
rusty1s committed
20
21
22
23
24
25
26
27
28
29
    node_perm, row_perm, col_perm, mask, node_size, edge_size = data

    assert node_perm.tolist() == [2, 3, 0, 1]
    assert row_perm.tolist() == [2, 2, 3, -1, 0, 0, 0, 0, 1, 1, 1, -1]
    assert col_perm.tolist() == [1, 3, 2, -1, 0, 1, 2, 3, 0, 2, 3, -1]
    assert mask.long().tolist() == [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1]
    assert node_size == [2, 2]
    assert edge_size == [4, 8]

    x = tensor([0, 1, 2, 3], dtype, device).view(-1, 1).requires_grad_()
rusty1s's avatar
rusty1s committed
30
    x_j = padded_index_select(x, col_perm)
rusty1s's avatar
rusty1s committed
31

rusty1s's avatar
rusty1s committed
32
    assert x_j.flatten().tolist() == [1, 3, 2, 0, 0, 1, 2, 3, 0, 2, 3, 0]
rusty1s's avatar
rusty1s committed
33
34

    grad_out = tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], dtype, device)
rusty1s's avatar
rusty1s committed
35
    x_j.backward(grad_out.view(-1, 1))
rusty1s's avatar
rusty1s committed
36
37
38
39

    assert x.grad.flatten().tolist() == [12, 5, 17, 18]


rusty1s's avatar
rusty1s committed
40
def test_padded_index_select_runtime():
rusty1s's avatar
rusty1s committed
41
42
    return
    from torch_geometric.datasets import Planetoid
rusty1s's avatar
rusty1s committed
43
44

    device = torch.device('cuda')
rusty1s's avatar
rusty1s committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    start = torch.cuda.Event(enable_timing=True)
    end = torch.cuda.Event(enable_timing=True)

    dataset = Planetoid('/tmp/Planetoid', name='PubMed')
    data = dataset[0]
    row, col = data.edge_index.to(device)

    adj = SparseTensor(row=row, col=col)
    rowcount = adj.storage.rowcount().to(device)
    rowptr = adj.storage.rowptr().to(device)
    binptr = torch.tensor([0, 4, 11, 30, 50, 80, 120, 140, 2000]).to(device)

    x = torch.randn(adj.size(0), 512).to(device)

    data = torch.ops.torch_sparse.padded_index(rowptr, col, rowcount, binptr)
    node_perm, row_perm, col_perm, mask, node_sizes, edge_sizes = data

    out = torch.ops.torch_sparse.padded_index_select(x, col_perm,
                                                     torch.tensor(0.))
    outs = out.split(edge_sizes)
    for out, size in zip(outs, node_sizes):
        print(out.view(size, -1, x.size(-1)).shape)

    for i in range(110):
        if i == 10:
            start.record()
        torch.ops.torch_sparse.padded_index(rowptr, col, rowcount, binptr)
    end.record()
    torch.cuda.synchronize()
    print('padded index', start.elapsed_time(end))

    for i in range(110):
        if i == 10:
            start.record()
        out = torch.ops.torch_sparse.padded_index_select(
            x, col_perm, torch.tensor(0.))
        out.split(edge_sizes)
    end.record()
    torch.cuda.synchronize()
    print('padded index select', start.elapsed_time(end))

    for i in range(110):
        if i == 10:
            start.record()
        x.index_select(0, col)
    end.record()
    torch.cuda.synchronize()
    print('index_select', start.elapsed_time(end))