neighbor_sample_cpu.cpp 12.4 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#include "neighbor_sample_cpu.h"

#include "utils.h"

using namespace std;

namespace {

template <bool replace, bool directed>
tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>
sample(const torch::Tensor &colptr, const torch::Tensor &row,
       const torch::Tensor &input_node, const vector<int64_t> num_neighbors) {

  // Initialize some data structures for the sampling process:
  vector<int64_t> samples;
  unordered_map<int64_t, int64_t> to_local_node;

  auto *colptr_data = colptr.data_ptr<int64_t>();
  auto *row_data = row.data_ptr<int64_t>();
  auto *input_node_data = input_node.data_ptr<int64_t>();

  for (int64_t i = 0; i < input_node.numel(); i++) {
    const auto &v = input_node_data[i];
    samples.push_back(v);
    to_local_node.insert({v, i});
  }

  vector<int64_t> rows, cols, edges;

  int64_t begin = 0, end = samples.size();
  for (int64_t ell = 0; ell < (int64_t)num_neighbors.size(); ell++) {
    const auto &num_samples = num_neighbors[ell];
    for (int64_t i = begin; i < end; i++) {
      const auto &w = samples[i];
      const auto &col_start = colptr_data[w];
      const auto &col_end = colptr_data[w + 1];
      const auto col_count = col_end - col_start;

      if (col_count == 0)
        continue;

rusty1s's avatar
bugfix  
rusty1s committed
42
43
      if ((num_samples < 0) || (!replace && (num_samples >= col_count))) {
        for (int64_t offset = col_start; offset < col_end; offset++) {
rusty1s's avatar
rusty1s committed
44
45
46
47
48
49
50
51
52
53
          const int64_t &v = row_data[offset];
          const auto res = to_local_node.insert({v, samples.size()});
          if (res.second)
            samples.push_back(v);
          if (directed) {
            cols.push_back(i);
            rows.push_back(res.first->second);
            edges.push_back(offset);
          }
        }
rusty1s's avatar
bugfix  
rusty1s committed
54
55
56
      } else if (replace) {
        for (int64_t j = 0; j < num_samples; j++) {
          const int64_t offset = col_start + rand() % col_count;
rusty1s's avatar
rusty1s committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
          const int64_t &v = row_data[offset];
          const auto res = to_local_node.insert({v, samples.size()});
          if (res.second)
            samples.push_back(v);
          if (directed) {
            cols.push_back(i);
            rows.push_back(res.first->second);
            edges.push_back(offset);
          }
        }
      } else {
        unordered_set<int64_t> rnd_indices;
        for (int64_t j = col_count - num_samples; j < col_count; j++) {
          int64_t rnd = rand() % j;
          if (!rnd_indices.insert(rnd).second) {
            rnd = j;
            rnd_indices.insert(j);
          }
          const int64_t offset = col_start + rnd;
          const int64_t &v = row_data[offset];
          const auto res = to_local_node.insert({v, samples.size()});
          if (res.second)
            samples.push_back(v);
          if (directed) {
            cols.push_back(i);
            rows.push_back(res.first->second);
            edges.push_back(offset);
          }
        }
      }
    }
    begin = end, end = samples.size();
  }

  if (!directed) {
    unordered_map<int64_t, int64_t>::iterator iter;
    for (int64_t i = 0; i < (int64_t)samples.size(); i++) {
      const auto &w = samples[i];
      const auto &col_start = colptr_data[w];
      const auto &col_end = colptr_data[w + 1];
      for (int64_t offset = col_start; offset < col_end; offset++) {
        const auto &v = row_data[offset];
        iter = to_local_node.find(v);
        if (iter != to_local_node.end()) {
          rows.push_back(iter->second);
          cols.push_back(i);
          edges.push_back(offset);
        }
      }
    }
  }

  return make_tuple(from_vector<int64_t>(samples), from_vector<int64_t>(rows),
                    from_vector<int64_t>(cols), from_vector<int64_t>(edges));
}

template <bool replace, bool directed>
rusty1s's avatar
bugfix  
rusty1s committed
114
115
116
117
tuple<c10::Dict<node_t, torch::Tensor>, c10::Dict<rel_t, torch::Tensor>,
      c10::Dict<rel_t, torch::Tensor>, c10::Dict<rel_t, torch::Tensor>>
hetero_sample(const vector<node_t> &node_types,
              const vector<edge_t> &edge_types,
rusty1s's avatar
rusty1s committed
118
119
120
              const c10::Dict<rel_t, torch::Tensor> &colptr_dict,
              const c10::Dict<rel_t, torch::Tensor> &row_dict,
              const c10::Dict<node_t, torch::Tensor> &input_node_dict,
rusty1s's avatar
bugfix  
rusty1s committed
121
              const c10::Dict<rel_t, vector<int64_t>> &num_neighbors_dict,
rusty1s's avatar
rusty1s committed
122
123
124
125
126
127
128
129
130
131
              const int64_t num_hops) {

  // Create a mapping to convert single string relations to edge type triplets:
  unordered_map<rel_t, edge_t> to_edge_type;
  for (const auto &k : edge_types)
    to_edge_type[get<0>(k) + "__" + get<1>(k) + "__" + get<2>(k)] = k;

  // Initialize some data structures for the sampling process:
  unordered_map<node_t, vector<int64_t>> samples_dict;
  unordered_map<node_t, unordered_map<int64_t, int64_t>> to_local_node_dict;
rusty1s's avatar
bugfix  
rusty1s committed
132
133
134
  for (const auto &node_type : node_types) {
    samples_dict[node_type];
    to_local_node_dict[node_type];
rusty1s's avatar
rusty1s committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
  }

  unordered_map<rel_t, vector<int64_t>> rows_dict, cols_dict, edges_dict;
  for (const auto &kv : colptr_dict) {
    const auto &rel_type = kv.key();
    rows_dict[rel_type];
    cols_dict[rel_type];
    edges_dict[rel_type];
  }

  // Add the input nodes to the output nodes:
  for (const auto &kv : input_node_dict) {
    const auto &node_type = kv.key();
    const auto &input_node = kv.value();
    const auto *input_node_data = input_node.data_ptr<int64_t>();

    auto &samples = samples_dict.at(node_type);
    auto &to_local_node = to_local_node_dict.at(node_type);
    for (int64_t i = 0; i < input_node.numel(); i++) {
      const auto &v = input_node_data[i];
      samples.push_back(v);
      to_local_node.insert({v, i});
    }
  }

  unordered_map<node_t, pair<int64_t, int64_t>> slice_dict;
  for (const auto &kv : samples_dict)
    slice_dict[kv.first] = {0, kv.second.size()};

  for (int64_t ell = 0; ell < num_hops; ell++) {
    for (const auto &kv : num_neighbors_dict) {
      const auto &rel_type = kv.key();
      const auto &edge_type = to_edge_type[rel_type];
      const auto &src_node_type = get<0>(edge_type);
      const auto &dst_node_type = get<2>(edge_type);
rusty1s's avatar
bugfix  
rusty1s committed
170
      const auto num_samples = kv.value()[ell];
rusty1s's avatar
rusty1s committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
      const auto &dst_samples = samples_dict.at(dst_node_type);
      auto &src_samples = samples_dict.at(src_node_type);
      auto &to_local_src_node = to_local_node_dict.at(src_node_type);

      const auto *colptr_data = colptr_dict.at(rel_type).data_ptr<int64_t>();
      const auto *row_data = row_dict.at(rel_type).data_ptr<int64_t>();

      auto &rows = rows_dict.at(rel_type);
      auto &cols = cols_dict.at(rel_type);
      auto &edges = edges_dict.at(rel_type);

      const auto &begin = slice_dict.at(dst_node_type).first;
      const auto &end = slice_dict.at(dst_node_type).second;
      for (int64_t i = begin; i < end; i++) {
        const auto &w = dst_samples[i];
        const auto &col_start = colptr_data[w];
        const auto &col_end = colptr_data[w + 1];
        const auto col_count = col_end - col_start;

        if (col_count == 0)
          continue;

rusty1s's avatar
bugfix  
rusty1s committed
193
194
        if ((num_samples < 0) || (!replace && (num_samples >= col_count))) {
          for (int64_t offset = col_start; offset < col_end; offset++) {
rusty1s's avatar
rusty1s committed
195
196
197
198
199
200
201
202
203
204
            const int64_t &v = row_data[offset];
            const auto res = to_local_src_node.insert({v, src_samples.size()});
            if (res.second)
              src_samples.push_back(v);
            if (directed) {
              cols.push_back(i);
              rows.push_back(res.first->second);
              edges.push_back(offset);
            }
          }
rusty1s's avatar
bugfix  
rusty1s committed
205
206
207
        } else if (replace) {
          for (int64_t j = 0; j < num_samples; j++) {
            const int64_t offset = col_start + rand() % col_count;
rusty1s's avatar
rusty1s committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
            const int64_t &v = row_data[offset];
            const auto res = to_local_src_node.insert({v, src_samples.size()});
            if (res.second)
              src_samples.push_back(v);
            if (directed) {
              cols.push_back(i);
              rows.push_back(res.first->second);
              edges.push_back(offset);
            }
          }
        } else {
          unordered_set<int64_t> rnd_indices;
          for (int64_t j = col_count - num_samples; j < col_count; j++) {
            int64_t rnd = rand() % j;
            if (!rnd_indices.insert(rnd).second) {
              rnd = j;
              rnd_indices.insert(j);
            }
            const int64_t offset = col_start + rnd;
            const int64_t &v = row_data[offset];
            const auto res = to_local_src_node.insert({v, src_samples.size()});
            if (res.second)
              src_samples.push_back(v);
            if (directed) {
              cols.push_back(i);
              rows.push_back(res.first->second);
              edges.push_back(offset);
            }
          }
        }
      }
    }

    for (const auto &kv : samples_dict) {
      slice_dict[kv.first] = {slice_dict.at(kv.first).second, kv.second.size()};
    }
  }

  if (!directed) { // Construct the subgraph among the sampled nodes:
    unordered_map<int64_t, int64_t>::iterator iter;
    for (const auto &kv : colptr_dict) {
      const auto &rel_type = kv.key();
      const auto &edge_type = to_edge_type[rel_type];
      const auto &src_node_type = get<0>(edge_type);
      const auto &dst_node_type = get<2>(edge_type);
      const auto &dst_samples = samples_dict.at(dst_node_type);
      auto &to_local_src_node = to_local_node_dict.at(src_node_type);

      const auto *colptr_data = kv.value().data_ptr<int64_t>();
      const auto *row_data = row_dict.at(rel_type).data_ptr<int64_t>();

      auto &rows = rows_dict.at(rel_type);
      auto &cols = cols_dict.at(rel_type);
      auto &edges = edges_dict.at(rel_type);

      for (int64_t i = 0; i < (int64_t)dst_samples.size(); i++) {
        const auto &w = dst_samples[i];
        const auto &col_start = colptr_data[w];
        const auto &col_end = colptr_data[w + 1];
        for (int64_t offset = col_start; offset < col_end; offset++) {
          const auto &v = row_data[offset];
          iter = to_local_src_node.find(v);
          if (iter != to_local_src_node.end()) {
            rows.push_back(iter->second);
            cols.push_back(i);
            edges.push_back(offset);
          }
        }
      }
    }
  }

  return make_tuple(from_vector<node_t, int64_t>(samples_dict),
                    from_vector<rel_t, int64_t>(rows_dict),
                    from_vector<rel_t, int64_t>(cols_dict),
                    from_vector<rel_t, int64_t>(edges_dict));
}

} // namespace

tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>
neighbor_sample_cpu(const torch::Tensor &colptr, const torch::Tensor &row,
                    const torch::Tensor &input_node,
                    const vector<int64_t> num_neighbors, const bool replace,
                    const bool directed) {

  if (replace && directed) {
    return sample<true, true>(colptr, row, input_node, num_neighbors);
  } else if (replace && !directed) {
    return sample<true, false>(colptr, row, input_node, num_neighbors);
  } else if (!replace && directed) {
    return sample<false, true>(colptr, row, input_node, num_neighbors);
  } else {
    return sample<false, false>(colptr, row, input_node, num_neighbors);
  }
}

rusty1s's avatar
bugfix  
rusty1s committed
305
306
tuple<c10::Dict<node_t, torch::Tensor>, c10::Dict<rel_t, torch::Tensor>,
      c10::Dict<rel_t, torch::Tensor>, c10::Dict<rel_t, torch::Tensor>>
rusty1s's avatar
rusty1s committed
307
hetero_neighbor_sample_cpu(
rusty1s's avatar
bugfix  
rusty1s committed
308
    const vector<node_t> &node_types, const vector<edge_t> &edge_types,
rusty1s's avatar
rusty1s committed
309
310
311
    const c10::Dict<rel_t, torch::Tensor> &colptr_dict,
    const c10::Dict<rel_t, torch::Tensor> &row_dict,
    const c10::Dict<node_t, torch::Tensor> &input_node_dict,
rusty1s's avatar
bugfix  
rusty1s committed
312
    const c10::Dict<rel_t, vector<int64_t>> &num_neighbors_dict,
rusty1s's avatar
rusty1s committed
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    const int64_t num_hops, const bool replace, const bool directed) {

  if (replace && directed) {
    return hetero_sample<true, true>(node_types, edge_types, colptr_dict,
                                     row_dict, input_node_dict,
                                     num_neighbors_dict, num_hops);
  } else if (replace && !directed) {
    return hetero_sample<true, false>(node_types, edge_types, colptr_dict,
                                      row_dict, input_node_dict,
                                      num_neighbors_dict, num_hops);
  } else if (!replace && directed) {
    return hetero_sample<false, true>(node_types, edge_types, colptr_dict,
                                      row_dict, input_node_dict,
                                      num_neighbors_dict, num_hops);
  } else {
    return hetero_sample<false, false>(node_types, edge_types, colptr_dict,
                                       row_dict, input_node_dict,
                                       num_neighbors_dict, num_hops);
  }
}