cat.py 7.69 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
from typing import List, Optional

rusty1s's avatar
cat  
rusty1s committed
3
import torch
rusty1s's avatar
rusty1s committed
4
5
from torch_sparse.storage import SparseStorage
from torch_sparse.tensor import SparseTensor
rusty1s's avatar
cat  
rusty1s committed
6
7


rusty1s's avatar
rusty1s committed
8
9
@torch.jit.script
def cat(tensors: List[SparseTensor], dim: int) -> SparseTensor:
rusty1s's avatar
cat  
rusty1s committed
10
    assert len(tensors) > 0
rusty1s's avatar
rusty1s committed
11
12
    if dim < 0:
        dim = tensors[0].dim() + dim
rusty1s's avatar
rusty1s committed
13

rusty1s's avatar
cat  
rusty1s committed
14
    if dim == 0:
rusty1s's avatar
rusty1s committed
15
16
17
18
19
20
21
22
        rows: List[torch.Tensor] = []
        rowptrs: List[torch.Tensor] = []
        cols: List[torch.Tensor] = []
        values: List[torch.Tensor] = []
        sparse_sizes: List[int] = [0, 0]
        rowcounts: List[torch.Tensor] = []

        nnz: int = 0
rusty1s's avatar
cat  
rusty1s committed
23
        for tensor in tensors:
rusty1s's avatar
rusty1s committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
            row = tensor.storage._row
            if row is not None:
                rows.append(row + sparse_sizes[0])

            rowptr = tensor.storage._rowptr
            if rowptr is not None:
                if len(rowptrs) > 0:
                    rowptr = rowptr[1:]
                rowptrs.append(rowptr + nnz)

            cols.append(tensor.storage._col)

            value = tensor.storage._value
            if value is not None:
                values.append(value)

            rowcount = tensor.storage._rowcount
            if rowcount is not None:
                rowcounts.append(rowcount)

            sparse_sizes[0] += tensor.sparse_size(0)
            sparse_sizes[1] = max(sparse_sizes[1], tensor.sparse_size(1))
            nnz += tensor.nnz()

        row: Optional[torch.Tensor] = None
        if len(rows) == len(tensors):
            row = torch.cat(rows, dim=0)

        rowptr: Optional[torch.Tensor] = None
        if len(rowptrs) == len(tensors):
            rowptr = torch.cat(rowptrs, dim=0)

        col = torch.cat(cols, dim=0)

        value: Optional[torch.Tensor] = None
        if len(values) == len(tensors):
            value = torch.cat(values, dim=0)

        rowcount: Optional[torch.Tensor] = None
        if len(rowcounts) == len(tensors):
            rowcount = torch.cat(rowcounts, dim=0)

        storage = SparseStorage(row=row, rowptr=rowptr, col=col, value=value,
                                sparse_sizes=sparse_sizes, rowcount=rowcount,
                                colptr=None, colcount=None, csr2csc=None,
                                csc2csr=None, is_sorted=True)
        return tensors[0].from_storage(storage)
rusty1s's avatar
cat  
rusty1s committed
71

rusty1s's avatar
rusty1s committed
72
    elif dim == 1:
rusty1s's avatar
rusty1s committed
73
74
75
76
77
78
79
80
        rows: List[torch.Tensor] = []
        cols: List[torch.Tensor] = []
        values: List[torch.Tensor] = []
        sparse_sizes: List[int] = [0, 0]
        colptrs: List[torch.Tensor] = []
        colcounts: List[torch.Tensor] = []

        nnz: int = 0
rusty1s's avatar
rusty1s committed
81
        for tensor in tensors:
rusty1s's avatar
rusty1s committed
82
            row, col, value = tensor.coo()
rusty1s's avatar
rusty1s committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

            rows.append(row)

            cols.append(tensor.storage._col + sparse_sizes[1])

            if value is not None:
                values.append(value)

            colptr = tensor.storage._colptr
            if colptr is not None:
                if len(colptrs) > 0:
                    colptr = colptr[1:]
                colptrs.append(colptr + nnz)

            colcount = tensor.storage._colcount
            if colcount is not None:
                colcounts.append(colcount)

            sparse_sizes[0] = max(sparse_sizes[0], tensor.sparse_size(0))
            sparse_sizes[1] += tensor.sparse_size(1)
            nnz += tensor.nnz()

        row = torch.cat(rows, dim=0)

        col = torch.cat(cols, dim=0)

        value: Optional[torch.Tensor] = None
        if len(values) == len(tensors):
            value = torch.cat(values, dim=0)

        colptr: Optional[torch.Tensor] = None
        if len(colptrs) == len(tensors):
            colptr = torch.cat(colptrs, dim=0)

        colcount: Optional[torch.Tensor] = None
        if len(colcounts) == len(tensors):
            colcount = torch.cat(colcounts, dim=0)

        storage = SparseStorage(row=row, rowptr=None, col=col, value=value,
                                sparse_sizes=sparse_sizes, rowcount=None,
                                colptr=colptr, colcount=colcount, csr2csc=None,
                                csc2csr=None, is_sorted=False)
        return tensors[0].from_storage(storage)

    elif dim > 1 and dim < tensors[0].dim():
        values: List[torch.Tensor] = []
rusty1s's avatar
rusty1s committed
129
        for tensor in tensors:
rusty1s's avatar
rusty1s committed
130
131
132
133
134
135
136
            value = tensor.storage.value()
            if value is not None:
                values.append(value)

        value: Optional[torch.Tensor] = None
        if len(values) == len(tensors):
            value = torch.cat(values, dim=dim - 1)
rusty1s's avatar
rusty1s committed
137

rusty1s's avatar
rusty1s committed
138
        return tensors[0].set_value(value, layout='coo')
rusty1s's avatar
cat  
rusty1s committed
139
    else:
rusty1s's avatar
rusty1s committed
140
        raise IndexError(
rusty1s's avatar
rusty1s committed
141
142
            'Dimension out of range: Expected to be in range of [{}, {}], but '
            'got {}.'.format(-tensors[0].dim(), tensors[0].dim() - 1, dim))
rusty1s's avatar
cat  
rusty1s committed
143

rusty1s's avatar
rusty1s committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

@torch.jit.script
def cat_diag(tensors: List[SparseTensor]) -> SparseTensor:
    assert len(tensors) > 0

    rows: List[torch.Tensor] = []
    rowptrs: List[torch.Tensor] = []
    cols: List[torch.Tensor] = []
    values: List[torch.Tensor] = []
    sparse_sizes: List[int] = [0, 0]
    rowcounts: List[torch.Tensor] = []
    colptrs: List[torch.Tensor] = []
    colcounts: List[torch.Tensor] = []
    csr2cscs: List[torch.Tensor] = []
    csc2csrs: List[torch.Tensor] = []

    nnz: int = 0
    for tensor in tensors:
        row = tensor.storage._row
        if row is not None:
            rows.append(row + sparse_sizes[0])

        rowptr = tensor.storage._rowptr
        if rowptr is not None:
            if len(rowptrs) > 0:
                rowptr = rowptr[1:]
            rowptrs.append(rowptr + nnz)

        cols.append(tensor.storage._col + sparse_sizes[1])

        value = tensor.storage._value
        if value is not None:
            values.append(value)

        rowcount = tensor.storage._rowcount
        if rowcount is not None:
            rowcounts.append(rowcount)

        colptr = tensor.storage._colptr
        if colptr is not None:
            if len(colptrs) > 0:
                colptr = colptr[1:]
            colptrs.append(colptr + nnz)

        colcount = tensor.storage._colcount
        if colcount is not None:
            colcounts.append(colcount)

        csr2csc = tensor.storage._csr2csc
        if csr2csc is not None:
            csr2cscs.append(csr2csc + nnz)

        csc2csr = tensor.storage._csc2csr
        if csc2csr is not None:
            csc2csrs.append(csc2csr + nnz)

        sparse_sizes[0] += tensor.sparse_size(0)
        sparse_sizes[1] += tensor.sparse_size(1)
        nnz += tensor.nnz()

    row: Optional[torch.Tensor] = None
    if len(rows) == len(tensors):
        row = torch.cat(rows, dim=0)

    rowptr: Optional[torch.Tensor] = None
    if len(rowptrs) == len(tensors):
        rowptr = torch.cat(rowptrs, dim=0)

    col = torch.cat(cols, dim=0)

    value: Optional[torch.Tensor] = None
    if len(values) == len(tensors):
        value = torch.cat(values, dim=0)

    rowcount: Optional[torch.Tensor] = None
    if len(rowcounts) == len(tensors):
        rowcount = torch.cat(rowcounts, dim=0)

    colptr: Optional[torch.Tensor] = None
    if len(colptrs) == len(tensors):
        colptr = torch.cat(colptrs, dim=0)

    colcount: Optional[torch.Tensor] = None
    if len(colcounts) == len(tensors):
        colcount = torch.cat(colcounts, dim=0)

    csr2csc: Optional[torch.Tensor] = None
    if len(csr2cscs) == len(tensors):
        csr2csc = torch.cat(csr2cscs, dim=0)

    csc2csr: Optional[torch.Tensor] = None
    if len(csc2csrs) == len(tensors):
        csc2csr = torch.cat(csc2csrs, dim=0)

    storage = SparseStorage(row=row, rowptr=rowptr, col=col, value=value,
                            sparse_sizes=sparse_sizes, rowcount=rowcount,
                            colptr=colptr, colcount=colcount, csr2csc=csr2csc,
                            csc2csr=csc2csr, is_sorted=True)
    return tensors[0].from_storage(storage)