matmul.py 4.14 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
import importlib
rusty1s's avatar
matmul  
rusty1s committed
2
import os.path as osp
rusty1s's avatar
rusty1s committed
3
from typing import Union, Tuple
rusty1s's avatar
matmul  
rusty1s committed
4

rusty1s's avatar
rusty1s committed
5
import torch
rusty1s's avatar
matmul  
rusty1s committed
6
7
from torch_sparse.tensor import SparseTensor

rusty1s's avatar
rusty1s committed
8
9
10
11
torch.ops.load_library(importlib.machinery.PathFinder().find_spec(
    '_spmm', [osp.dirname(__file__)]).origin)
torch.ops.load_library(importlib.machinery.PathFinder().find_spec(
    '_spspmm', [osp.dirname(__file__)]).origin)
rusty1s's avatar
matmul  
rusty1s committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38


@torch.jit.script
def spmm_sum(src: SparseTensor, other: torch.Tensor) -> torch.Tensor:
    rowptr, col, value = src.csr()

    row = src.storage._row
    csr2csc = src.storage._csr2csc
    colptr = src.storage._colptr

    if value is not None and value.requires_grad:
        row = src.storage.row()

    if other.requires_grad:
        row = src.storage.row()
        csr2csc = src.storage.csr2csc()
        colptr = src.storage.colptr()

    return torch.ops.torch_sparse.spmm_sum(row, rowptr, col, value, colptr,
                                           csr2csc, other)


@torch.jit.script
def spmm_add(src: SparseTensor, other: torch.Tensor) -> torch.Tensor:
    return spmm_sum(src, other)


39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
@torch.jit.script
def spmm_mean(src: SparseTensor, other: torch.Tensor) -> torch.Tensor:
    rowptr, col, value = src.csr()

    row = src.storage._row
    rowcount = src.storage._rowcount
    csr2csc = src.storage._csr2csc
    colptr = src.storage._colptr

    if value is not None and value.requires_grad:
        row = src.storage.row()

    if other.requires_grad:
        row = src.storage.row()
        rowcount = src.storage.rowcount()
        csr2csc = src.storage.csr2csc()
        colptr = src.storage.colptr()

    return torch.ops.torch_sparse.spmm_mean(row, rowptr, col, value, rowcount,
                                            colptr, csr2csc, other)


rusty1s's avatar
rusty1s committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
@torch.jit.script
def spmm_min(src: SparseTensor,
             other: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
    rowptr, col, value = src.csr()
    return torch.ops.torch_sparse.spmm_min(rowptr, col, value, other)


@torch.jit.script
def spmm_max(src: SparseTensor,
             other: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
    rowptr, col, value = src.csr()
    return torch.ops.torch_sparse.spmm_max(rowptr, col, value, other)


rusty1s's avatar
matmul  
rusty1s committed
75
76
77
78
79
@torch.jit.script
def spmm(src: SparseTensor, other: torch.Tensor,
         reduce: str = "sum") -> torch.Tensor:
    if reduce == 'sum' or reduce == 'add':
        return spmm_sum(src, other)
80
81
    elif reduce == 'mean':
        return spmm_mean(src, other)
rusty1s's avatar
rusty1s committed
82
83
84
85
86
87
88
89
90
91
    elif reduce == 'min':
        return spmm_min(src, other)[0]
    elif reduce == 'max':
        return spmm_max(src, other)[0]
    else:
        raise ValueError


@torch.jit.script
def spspmm_sum(src: SparseTensor, other: SparseTensor) -> SparseTensor:
rusty1s's avatar
rusty1s committed
92
    assert src.sparse_size(1) == other.sparse_size(0)
rusty1s's avatar
rusty1s committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    rowptrA, colA, valueA = src.csr()
    rowptrB, colB, valueB = other.csr()
    M, K = src.sparse_size(0), other.sparse_size(1)
    rowptrC, colC, valueC = torch.ops.torch_sparse.spspmm_sum(
        rowptrA, colA, valueA, rowptrB, colB, valueB, K)
    return SparseTensor(row=None, rowptr=rowptrC, col=colC, value=valueC,
                        sparse_sizes=torch.Size([M, K]), is_sorted=True)


@torch.jit.script
def spspmm_add(src: SparseTensor, other: SparseTensor) -> SparseTensor:
    return spspmm_sum(src, other)


@torch.jit.script
def spspmm(src: SparseTensor, other: SparseTensor,
           reduce: str = "sum") -> SparseTensor:
    if reduce == 'sum' or reduce == 'add':
        return spspmm_sum(src, other)
    elif reduce == 'mean' or reduce == 'min' or reduce == 'max':
        raise NotImplementedError
rusty1s's avatar
matmul  
rusty1s committed
114
115
116
117
118
119
    else:
        raise ValueError


def matmul(src: SparseTensor, other: Union[torch.Tensor, SparseTensor],
           reduce: str = "sum"):
rusty1s's avatar
rusty1s committed
120
    if torch.is_tensor(other):
rusty1s's avatar
matmul  
rusty1s committed
121
        return spmm(src, other, reduce)
rusty1s's avatar
rusty1s committed
122
123
    elif isinstance(other, SparseTensor):
        return spspmm(src, other, reduce)
rusty1s's avatar
matmul  
rusty1s committed
124
125
126
127
128
    else:
        raise ValueError


SparseTensor.spmm = lambda self, other, reduce=None: spmm(self, other, reduce)
rusty1s's avatar
rusty1s committed
129
130
SparseTensor.spspmm = lambda self, other, reduce=None: spspmm(
    self, other, reduce)
rusty1s's avatar
matmul  
rusty1s committed
131
132
133
SparseTensor.matmul = lambda self, other, reduce=None: matmul(
    self, other, reduce)
SparseTensor.__matmul__ = lambda self, other: matmul(self, other, 'sum')