test_jit.py 2.22 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import torch

from torch_sparse.tensor import SparseTensor
from torch_sparse.storage import SparseStorage

from typing import Dict, Any

# class MyTensor(dict):
#     def __init__(self, rowptr, col):
#         self['rowptr'] = rowptr
#         self['col'] = col

# def rowptr(self: Dict[str, torch.Tensor]):
#     return self['rowptr']


@torch.jit.script
class Foo:
    rowptr: torch.Tensor
    col: torch.Tensor

    def __init__(self, rowptr: torch.Tensor, col: torch.Tensor):
        self.rowptr = rowptr
        self.col = col


class MyCell(torch.nn.Module):
    def __init__(self):
        super(MyCell, self).__init__()
        self.linear = torch.nn.Linear(2, 4)

    # def forward(self, x: torch.Tensor, ptr: torch.Tensor) -> torch.Tensor:
rusty1s's avatar
rusty1s committed
33
34
35
36
    def forward(self, x: torch.Tensor, adj: SparseTensor) -> torch.Tensor:
        out, _ = torch.ops.torch_sparse_cpu.spmm(adj.storage.rowptr(),
                                                 adj.storage.col(), None, x,
                                                 'sum')
rusty1s's avatar
rusty1s committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
        return out


#         ind = torch.ops.torch_sparse_cpu.ptr2ind(ptr, ptr[-1].item())
#         # ind = ptr2ind(ptr, E)
#         x_j = x[ind]
#         out = self.linear(x_j)
#         return out


def test_jit():
    my_cell = MyCell()

    # x = torch.rand(3, 2)
    # ptr = torch.tensor([0, 2, 4, 6])
    # out = my_cell(x, ptr)
    # print()
    # print(out)

    # traced_cell = torch.jit.trace(my_cell, (x, ptr))
    # print(traced_cell)
    # out = traced_cell(x, ptr)
    # print(out)

    x = torch.randn(3, 2)

    # adj = torch.randn(3, 3)
    # adj = SparseTensor.from_dense(adj)
    # adj = Foo(adj.storage.rowptr, adj.storage.col)
    # adj = adj.storage

rusty1s's avatar
repr  
rusty1s committed
68
69
    rowptr = torch.tensor([0, 1, 4, 7])
    col = torch.tensor([0, 0, 1, 2, 0, 1, 2])
rusty1s's avatar
rusty1s committed
70

rusty1s's avatar
rusty1s committed
71
    adj = SparseTensor(rowptr=rowptr, col=col)
rusty1s's avatar
repr  
rusty1s committed
72
73
74
75
    # scipy = adj.to_scipy(layout='csr')
    # mat = SparseTensor.from_scipy(scipy)
    print()
    print(adj)
rusty1s's avatar
rusty1s committed
76
77
78
79
80
81
82
83
84
85

    # adj = {'rowptr': mat.storage.rowptr, 'col': mat.storage.col}
    # foo = Foo(mat.storage.rowptr, mat.storage.col)
    # adj = MyTensor(mat.storage.rowptr, mat.storage.col)

    traced_cell = torch.jit.script(my_cell)
    print(traced_cell)
    out = traced_cell(x, adj)
    print(out)
    # # print(traced_cell.code)