spspmm_cpu.cpp 4.05 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#include "spspmm_cpu.h"

#include "utils.h"

std::tuple<torch::Tensor, torch::Tensor, torch::optional<torch::Tensor>>
spspmm_cpu(torch::Tensor rowptrA, torch::Tensor colA,
           torch::optional<torch::Tensor> optional_valueA,
           torch::Tensor rowptrB, torch::Tensor colB,
           torch::optional<torch::Tensor> optional_valueB, int64_t K,
           std::string reduce) {

  CHECK_CPU(rowptrA);
  CHECK_CPU(colA);
  if (optional_valueA.has_value())
    CHECK_CPU(optional_valueA.value());
  CHECK_CPU(rowptrB);
  CHECK_CPU(colB);
  if (optional_valueB.has_value())
    CHECK_CPU(optional_valueB.value());

  CHECK_INPUT(rowptrA.dim() == 1);
  CHECK_INPUT(colA.dim() == 1);
  if (optional_valueA.has_value()) {
    CHECK_INPUT(optional_valueA.value().dim() == 1);
    CHECK_INPUT(optional_valueA.value().size(0) == colA.size(0));
  }
  CHECK_INPUT(rowptrB.dim() == 1);
  CHECK_INPUT(colB.dim() == 1);
  if (optional_valueB.has_value()) {
    CHECK_INPUT(optional_valueB.value().dim() == 1);
    CHECK_INPUT(optional_valueB.value().size(0) == colB.size(0));
  }

  if (!optional_valueA.has_value() && optional_valueB.has_value())
    optional_valueA =
        torch::ones(colA.numel(), optional_valueB.value().options());

  if (!optional_valueB.has_value() && optional_valueA.has_value())
    optional_valueB =
        torch::ones(colB.numel(), optional_valueA.value().options());

  auto scalar_type = torch::ScalarType::Float;
  if (optional_valueA.has_value())
    scalar_type = optional_valueA.value().scalar_type();

  auto rowptrA_data = rowptrA.data_ptr<int64_t>();
  auto colA_data = colA.data_ptr<int64_t>();
  auto rowptrB_data = rowptrB.data_ptr<int64_t>();
  auto colB_data = colB.data_ptr<int64_t>();

  // Pass 1: Compute CSR row pointer.
  auto rowptrC = torch::empty_like(rowptrA);
  auto rowptrC_data = rowptrC.data_ptr<int64_t>();
  rowptrC_data[0] = 0;

rusty1s's avatar
rusty1s committed
56
57
58
59
  std::vector<int64_t> mask(K, -1);
  int64_t nnz = 0, row_nnz, rowA_start, rowA_end, rowB_start, rowB_end, cA, cB;
  for (auto n = 0; n < rowptrA.numel() - 1; n++) {
    row_nnz = 0;
rusty1s's avatar
rusty1s committed
60

rusty1s's avatar
rusty1s committed
61
    for (auto eA = rowptrA_data[n]; eA < rowptrA_data[n + 1]; eA++) {
rusty1s's avatar
rusty1s committed
62
      cA = colA_data[eA];
rusty1s's avatar
rusty1s committed
63
64
65
66
67
68
69
      for (auto eB = rowptrB_data[cA]; eB < rowptrB_data[cA + 1]; eB++) {
        cB = colB_data[eB];
        if (mask[cB] != n) {
          mask[cB] = n;
          row_nnz++;
        }
      }
rusty1s's avatar
rusty1s committed
70
71
72
    }

    nnz += row_nnz;
rusty1s's avatar
rusty1s committed
73
    rowptrC_data[n + 1] = nnz;
rusty1s's avatar
rusty1s committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
  }

  // Pass 2: Compute CSR entries.
  auto colC = torch::empty(nnz, rowptrC.options());
  auto colC_data = colC.data_ptr<int64_t>();

  torch::optional<torch::Tensor> optional_valueC = torch::nullopt;
  if (optional_valueA.has_value())
    optional_valueC = torch::empty(nnz, optional_valueA.value().options());

  AT_DISPATCH_ALL_TYPES(scalar_type, "spspmm", [&] {
    AT_DISPATCH_HAS_VALUE(optional_valueC, [&] {
      scalar_t *valA_data = nullptr, *valB_data = nullptr, *valC_data = nullptr;
      if (HAS_VALUE) {
        valA_data = optional_valueA.value().data_ptr<scalar_t>();
        valB_data = optional_valueB.value().data_ptr<scalar_t>();
        valC_data = optional_valueC.value().data_ptr<scalar_t>();
      }
      scalar_t valA;

      rowA_start = 0, nnz = 0;
      std::vector<scalar_t> vals(K, 0);
      for (auto n = 1; n < rowptrA.numel(); n++) {
        rowA_end = rowptrA_data[n];

        for (auto eA = rowA_start; eA < rowA_end; eA++) {
          cA = colA_data[eA];
          if (HAS_VALUE)
            valA = valA_data[eA];

          rowB_start = rowptrB_data[cA], rowB_end = rowptrB_data[cA + 1];
          for (auto eB = rowB_start; eB < rowB_end; eB++) {
            cB = colB_data[eB];
            if (HAS_VALUE)
              vals[cB] += valA * valB_data[eB];
            else
              vals[cB] += 1;
          }
        }

        for (auto k = 0; k < K; k++) {
          if (vals[k] != 0) {
            colC_data[nnz] = k;
            if (HAS_VALUE)
              valC_data[nnz] = vals[k];
            nnz++;
          }
          vals[k] = (scalar_t)0;
        }

        rowA_start = rowA_end;
      }
    });
  });

  return std::make_tuple(rowptrC, colC, optional_valueC);
}