diag.py 3.55 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
from typing import Optional

rusty1s's avatar
rusty1s committed
3
import torch
rusty1s's avatar
rusty1s committed
4
5
from torch_sparse.storage import SparseStorage
from torch_sparse.tensor import SparseTensor
rusty1s's avatar
rusty1s committed
6
7


rusty1s's avatar
rusty1s committed
8
9
@torch.jit.script
def remove_diag(src: SparseTensor, k: int = 0) -> SparseTensor:
rusty1s's avatar
rusty1s committed
10
    row, col, value = src.coo()
rusty1s's avatar
rusty1s committed
11
    inv_mask = row != col if k == 0 else row != (col - k)
rusty1s's avatar
rusty1s committed
12
    new_row, new_col = row[inv_mask], col[inv_mask]
rusty1s's avatar
rusty1s committed
13

rusty1s's avatar
rusty1s committed
14
    if value is not None:
rusty1s's avatar
rusty1s committed
15
16
        value = value[inv_mask]

rusty1s's avatar
rusty1s committed
17
18
19
    rowcount = src.storage._rowcount
    colcount = src.storage._colcount
    if rowcount is not None or colcount is not None:
rusty1s's avatar
rusty1s committed
20
        mask = ~inv_mask
rusty1s's avatar
rusty1s committed
21
22
23
24
25
26
27
        if rowcount is not None:
            rowcount = rowcount.clone()
            rowcount[row[mask]] -= 1
        if colcount is not None:
            colcount = colcount.clone()
            colcount[col[mask]] -= 1

rusty1s's avatar
rusty1s committed
28
29
30
31
32
33
34
35
36
37
38
39
    storage = SparseStorage(
        row=new_row,
        rowptr=None,
        col=new_col,
        value=value,
        sparse_sizes=src.sparse_sizes(),
        rowcount=rowcount,
        colptr=None,
        colcount=colcount,
        csr2csc=None,
        csc2csr=None,
        is_sorted=True)
rusty1s's avatar
rusty1s committed
40
41
42
43
    return src.from_storage(storage)


@torch.jit.script
rusty1s's avatar
rusty1s committed
44
45
def set_diag(src: SparseTensor,
             values: Optional[torch.Tensor] = None,
rusty1s's avatar
rusty1s committed
46
             k: int = 0) -> SparseTensor:
rusty1s's avatar
rusty1s committed
47
    src = remove_diag(src, k=k)
rusty1s's avatar
rusty1s committed
48
    row, col, value = src.coo()
rusty1s's avatar
rusty1s committed
49

rusty1s's avatar
matmul  
rusty1s committed
50
51
    mask = torch.ops.torch_sparse.non_diag_mask(row, col, src.size(0),
                                                src.size(1), k)
rusty1s's avatar
rusty1s committed
52
53
    inv_mask = ~mask

rusty1s's avatar
rusty1s committed
54
    start, num_diag = -k if k < 0 else 0, mask.numel() - row.numel()
rusty1s's avatar
rusty1s committed
55
    diag = torch.arange(start, start + num_diag, device=row.device)
rusty1s's avatar
rusty1s committed
56

rusty1s's avatar
rusty1s committed
57
58
59
    new_row = row.new_empty(mask.size(0))
    new_row[mask] = row
    new_row[inv_mask] = diag
rusty1s's avatar
rusty1s committed
60

rusty1s's avatar
rusty1s committed
61
    new_col = col.new_empty(mask.size(0))
rusty1s's avatar
rusty1s committed
62
    new_col[mask] = col
rusty1s's avatar
rusty1s committed
63
    new_col[inv_mask] = diag.add_(k)
rusty1s's avatar
rusty1s committed
64

rusty1s's avatar
rusty1s committed
65
66
    new_value: Optional[torch.Tensor] = None
    if value is not None:
rusty1s's avatar
rusty1s committed
67
        new_value = value.new_empty((mask.size(0), ) + value.size()[1:])
rusty1s's avatar
rusty1s committed
68
        new_value[mask] = value
rusty1s's avatar
rusty1s committed
69
70
71
        if values is not None:
            new_value[inv_mask] = values
        else:
rusty1s's avatar
rusty1s committed
72
73
            new_value[inv_mask] = torch.ones((num_diag, ),
                                             dtype=value.dtype,
rusty1s's avatar
rusty1s committed
74
75
76
77
78
                                             device=value.device)

    rowcount = src.storage._rowcount
    if rowcount is not None:
        rowcount = rowcount.clone()
rusty1s's avatar
rusty1s committed
79
80
        rowcount[start:start + num_diag] += 1

rusty1s's avatar
rusty1s committed
81
82
83
    colcount = src.storage._colcount
    if colcount is not None:
        colcount = colcount.clone()
rusty1s's avatar
rusty1s committed
84
85
        colcount[start + k:start + num_diag + k] += 1

rusty1s's avatar
rusty1s committed
86
87
88
89
90
91
92
93
94
95
96
97
    storage = SparseStorage(
        row=new_row,
        rowptr=None,
        col=new_col,
        value=new_value,
        sparse_sizes=src.sparse_sizes(),
        rowcount=rowcount,
        colptr=None,
        colcount=colcount,
        csr2csc=None,
        csc2csr=None,
        is_sorted=True)
rusty1s's avatar
rusty1s committed
98
99
    return src.from_storage(storage)

rusty1s's avatar
rusty1s committed
100

rusty1s's avatar
rusty1s committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
@torch.jit.script
def fill_diag(src: SparseTensor, fill_value: int, k: int = 0) -> SparseTensor:
    num_diag = min(src.sparse_size(0), src.sparse_size(1) - k)
    if k < 0:
        num_diag = min(src.sparse_size(0) + k, src.sparse_size(1))

    value = src.storage.value()
    if value is not None:
        sizes = [num_diag] + src.sizes()[2:]
        return set_diag(src, value.new_full(sizes, fill_value), k)
    else:
        return set_diag(src, None, k)


rusty1s's avatar
rusty1s committed
115
116
117
SparseTensor.remove_diag = lambda self, k=0: remove_diag(self, k)
SparseTensor.set_diag = lambda self, values=None, k=0: set_diag(
    self, values, k)
rusty1s's avatar
rusty1s committed
118
119
SparseTensor.fill_diag = lambda self, fill_value, k=0: fill_diag(
    self, fill_value, k)