"torchvision/csrc/io/video_reader/video_reader.cpp" did not exist on "c5914452ef3629acbe0b9a72ff6847581bb89020"
cat.py 7.64 KB
Newer Older
rusty1s's avatar
linting  
rusty1s committed
1
from typing import Optional, List
rusty1s's avatar
rusty1s committed
2

rusty1s's avatar
cat  
rusty1s committed
3
import torch
rusty1s's avatar
rusty1s committed
4
5
from torch_sparse.storage import SparseStorage
from torch_sparse.tensor import SparseTensor
rusty1s's avatar
cat  
rusty1s committed
6
7


rusty1s's avatar
rusty1s committed
8
def cat(tensors: List[SparseTensor], dim: int) -> SparseTensor:
rusty1s's avatar
cat  
rusty1s committed
9
    assert len(tensors) > 0
rusty1s's avatar
rusty1s committed
10
11
    if dim < 0:
        dim = tensors[0].dim() + dim
rusty1s's avatar
rusty1s committed
12

rusty1s's avatar
cat  
rusty1s committed
13
    if dim == 0:
rusty1s's avatar
rusty1s committed
14
15
16
17
18
19
20
21
        rows: List[torch.Tensor] = []
        rowptrs: List[torch.Tensor] = []
        cols: List[torch.Tensor] = []
        values: List[torch.Tensor] = []
        sparse_sizes: List[int] = [0, 0]
        rowcounts: List[torch.Tensor] = []

        nnz: int = 0
rusty1s's avatar
cat  
rusty1s committed
22
        for tensor in tensors:
rusty1s's avatar
rusty1s committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
            row = tensor.storage._row
            if row is not None:
                rows.append(row + sparse_sizes[0])

            rowptr = tensor.storage._rowptr
            if rowptr is not None:
                if len(rowptrs) > 0:
                    rowptr = rowptr[1:]
                rowptrs.append(rowptr + nnz)

            cols.append(tensor.storage._col)

            value = tensor.storage._value
            if value is not None:
                values.append(value)

            rowcount = tensor.storage._rowcount
            if rowcount is not None:
                rowcounts.append(rowcount)

            sparse_sizes[0] += tensor.sparse_size(0)
            sparse_sizes[1] = max(sparse_sizes[1], tensor.sparse_size(1))
            nnz += tensor.nnz()

        row: Optional[torch.Tensor] = None
        if len(rows) == len(tensors):
            row = torch.cat(rows, dim=0)

        rowptr: Optional[torch.Tensor] = None
        if len(rowptrs) == len(tensors):
            rowptr = torch.cat(rowptrs, dim=0)

        col = torch.cat(cols, dim=0)

        value: Optional[torch.Tensor] = None
        if len(values) == len(tensors):
            value = torch.cat(values, dim=0)

        rowcount: Optional[torch.Tensor] = None
        if len(rowcounts) == len(tensors):
            rowcount = torch.cat(rowcounts, dim=0)

rusty1s's avatar
linting  
rusty1s committed
65
66
67
68
        storage = SparseStorage(row=row, rowptr=rowptr, col=col, value=value,
                                sparse_sizes=sparse_sizes, rowcount=rowcount,
                                colptr=None, colcount=None, csr2csc=None,
                                csc2csr=None, is_sorted=True)
rusty1s's avatar
rusty1s committed
69
        return tensors[0].from_storage(storage)
rusty1s's avatar
cat  
rusty1s committed
70

rusty1s's avatar
rusty1s committed
71
    elif dim == 1:
rusty1s's avatar
rusty1s committed
72
73
74
75
76
77
78
79
        rows: List[torch.Tensor] = []
        cols: List[torch.Tensor] = []
        values: List[torch.Tensor] = []
        sparse_sizes: List[int] = [0, 0]
        colptrs: List[torch.Tensor] = []
        colcounts: List[torch.Tensor] = []

        nnz: int = 0
rusty1s's avatar
rusty1s committed
80
        for tensor in tensors:
rusty1s's avatar
rusty1s committed
81
            row, col, value = tensor.coo()
rusty1s's avatar
rusty1s committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

            rows.append(row)

            cols.append(tensor.storage._col + sparse_sizes[1])

            if value is not None:
                values.append(value)

            colptr = tensor.storage._colptr
            if colptr is not None:
                if len(colptrs) > 0:
                    colptr = colptr[1:]
                colptrs.append(colptr + nnz)

            colcount = tensor.storage._colcount
            if colcount is not None:
                colcounts.append(colcount)

            sparse_sizes[0] = max(sparse_sizes[0], tensor.sparse_size(0))
            sparse_sizes[1] += tensor.sparse_size(1)
            nnz += tensor.nnz()

        row = torch.cat(rows, dim=0)

        col = torch.cat(cols, dim=0)

        value: Optional[torch.Tensor] = None
        if len(values) == len(tensors):
            value = torch.cat(values, dim=0)

        colptr: Optional[torch.Tensor] = None
        if len(colptrs) == len(tensors):
            colptr = torch.cat(colptrs, dim=0)

        colcount: Optional[torch.Tensor] = None
        if len(colcounts) == len(tensors):
            colcount = torch.cat(colcounts, dim=0)

rusty1s's avatar
linting  
rusty1s committed
120
121
122
123
        storage = SparseStorage(row=row, rowptr=None, col=col, value=value,
                                sparse_sizes=sparse_sizes, rowcount=None,
                                colptr=colptr, colcount=colcount, csr2csc=None,
                                csc2csr=None, is_sorted=False)
rusty1s's avatar
rusty1s committed
124
125
126
127
        return tensors[0].from_storage(storage)

    elif dim > 1 and dim < tensors[0].dim():
        values: List[torch.Tensor] = []
rusty1s's avatar
rusty1s committed
128
        for tensor in tensors:
rusty1s's avatar
rusty1s committed
129
130
131
132
133
134
135
            value = tensor.storage.value()
            if value is not None:
                values.append(value)

        value: Optional[torch.Tensor] = None
        if len(values) == len(tensors):
            value = torch.cat(values, dim=dim - 1)
rusty1s's avatar
rusty1s committed
136

rusty1s's avatar
rusty1s committed
137
        return tensors[0].set_value(value, layout='coo')
rusty1s's avatar
cat  
rusty1s committed
138
    else:
rusty1s's avatar
rusty1s committed
139
        raise IndexError(
rusty1s's avatar
rusty1s committed
140
141
            f'Dimension out of range: Expected to be in range of '
            '[{-tensors[0].dim()}, {tensors[0].dim() - 1}], but got {dim}.')
rusty1s's avatar
cat  
rusty1s committed
142

rusty1s's avatar
rusty1s committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

def cat_diag(tensors: List[SparseTensor]) -> SparseTensor:
    assert len(tensors) > 0

    rows: List[torch.Tensor] = []
    rowptrs: List[torch.Tensor] = []
    cols: List[torch.Tensor] = []
    values: List[torch.Tensor] = []
    sparse_sizes: List[int] = [0, 0]
    rowcounts: List[torch.Tensor] = []
    colptrs: List[torch.Tensor] = []
    colcounts: List[torch.Tensor] = []
    csr2cscs: List[torch.Tensor] = []
    csc2csrs: List[torch.Tensor] = []

    nnz: int = 0
    for tensor in tensors:
        row = tensor.storage._row
        if row is not None:
            rows.append(row + sparse_sizes[0])

        rowptr = tensor.storage._rowptr
        if rowptr is not None:
            if len(rowptrs) > 0:
                rowptr = rowptr[1:]
            rowptrs.append(rowptr + nnz)

        cols.append(tensor.storage._col + sparse_sizes[1])

        value = tensor.storage._value
        if value is not None:
            values.append(value)

        rowcount = tensor.storage._rowcount
        if rowcount is not None:
            rowcounts.append(rowcount)

        colptr = tensor.storage._colptr
        if colptr is not None:
            if len(colptrs) > 0:
                colptr = colptr[1:]
            colptrs.append(colptr + nnz)

        colcount = tensor.storage._colcount
        if colcount is not None:
            colcounts.append(colcount)

        csr2csc = tensor.storage._csr2csc
        if csr2csc is not None:
            csr2cscs.append(csr2csc + nnz)

        csc2csr = tensor.storage._csc2csr
        if csc2csr is not None:
            csc2csrs.append(csc2csr + nnz)

        sparse_sizes[0] += tensor.sparse_size(0)
        sparse_sizes[1] += tensor.sparse_size(1)
        nnz += tensor.nnz()

    row: Optional[torch.Tensor] = None
    if len(rows) == len(tensors):
        row = torch.cat(rows, dim=0)

    rowptr: Optional[torch.Tensor] = None
    if len(rowptrs) == len(tensors):
        rowptr = torch.cat(rowptrs, dim=0)

    col = torch.cat(cols, dim=0)

    value: Optional[torch.Tensor] = None
    if len(values) == len(tensors):
        value = torch.cat(values, dim=0)

    rowcount: Optional[torch.Tensor] = None
    if len(rowcounts) == len(tensors):
        rowcount = torch.cat(rowcounts, dim=0)

    colptr: Optional[torch.Tensor] = None
    if len(colptrs) == len(tensors):
        colptr = torch.cat(colptrs, dim=0)

    colcount: Optional[torch.Tensor] = None
    if len(colcounts) == len(tensors):
        colcount = torch.cat(colcounts, dim=0)

    csr2csc: Optional[torch.Tensor] = None
    if len(csr2cscs) == len(tensors):
        csr2csc = torch.cat(csr2cscs, dim=0)

    csc2csr: Optional[torch.Tensor] = None
    if len(csc2csrs) == len(tensors):
        csc2csr = torch.cat(csc2csrs, dim=0)

rusty1s's avatar
linting  
rusty1s committed
236
237
238
239
    storage = SparseStorage(row=row, rowptr=rowptr, col=col, value=value,
                            sparse_sizes=sparse_sizes, rowcount=rowcount,
                            colptr=colptr, colcount=colcount, csr2csc=csr2csc,
                            csc2csr=csc2csr, is_sorted=True)
rusty1s's avatar
rusty1s committed
240
    return tensors[0].from_storage(storage)