"vscode:/vscode.git/clone" did not exist on "c29b98e04393aa73680e6376bfc8774f4081eb35"
README.md 6.84 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
[pypi-image]: https://badge.fury.io/py/torch-sparse.svg
[pypi-url]: https://pypi.python.org/pypi/torch-sparse
[build-image]: https://travis-ci.org/rusty1s/pytorch_sparse.svg?branch=master
[build-url]: https://travis-ci.org/rusty1s/pytorch_sparse
[coverage-image]: https://codecov.io/gh/rusty1s/pytorch_sparse/branch/master/graph/badge.svg
[coverage-url]: https://codecov.io/github/rusty1s/pytorch_sparse?branch=master
rusty1s's avatar
rusty1s committed
7

rusty1s's avatar
rusty1s committed
8
# PyTorch Sparse
rusty1s's avatar
rusty1s committed
9
10
11
12
13
14

[![PyPI Version][pypi-image]][pypi-url]
[![Build Status][build-image]][build-url]
[![Code Coverage][coverage-image]][coverage-url]

--------------------------------------------------------------------------------
rusty1s's avatar
rusty1s committed
15

rusty1s's avatar
linting  
rusty1s committed
16
[PyTorch](http://pytorch.org/) completely lacks autograd support and operations such as sparse sparse matrix multiplication, but is heavily working on improvement (*cf.* [this issue](https://github.com/pytorch/pytorch/issues/9674)).
rusty1s's avatar
rusty1s committed
17
In the meantime, this package consists of a small extension library of optimized sparse matrix operations with autograd support.
rusty1s's avatar
typos  
rusty1s committed
18
This package currently consists of the following methods:
rusty1s's avatar
rusty1s committed
19

rusty1s's avatar
rusty1s committed
20
21
22
* **[Coalesce](#coalesce)**
* **[Transpose](#transpose)**
* **[Sparse Dense Matrix Multiplication](#sparse-dense-matrix-multiplication)**
rusty1s's avatar
docs  
rusty1s committed
23
* **[Sparse Sparse Matrix Multiplication](#sparse-sparse-matrix-multiplication)**
rusty1s's avatar
rusty1s committed
24
25

All included operations work on varying data types and are implemented both for CPU and GPU.
rusty1s's avatar
rusty1s committed
26
27
To avoid the hazzle of creating [`torch.sparse_coo_tensor`](https://pytorch.org/docs/stable/torch.html?highlight=sparse_coo_tensor#torch.sparse_coo_tensor), this package defines operations on sparse tensors by simply passing `index` and `value` tensors as arguments ([with same shapes as defined in PyTorch](https://pytorch.org/docs/stable/sparse.html)).
Note that only `value` comes with autograd support, as `index` is discrete and therefore not differentiable.
rusty1s's avatar
rusty1s committed
28
29
30

## Installation

rusty1s's avatar
rusty1s committed
31
Ensure that at least PyTorch 1.0.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*:
rusty1s's avatar
rusty1s committed
32
33

```
rusty1s's avatar
rusty1s committed
34
$ python -c "import torch; print(torch.__version__)"
rusty1s's avatar
rusty1s committed
35
>>> 1.0.0
rusty1s's avatar
rusty1s committed
36

rusty1s's avatar
rusty1s committed
37
$ echo $PATH
rusty1s's avatar
rusty1s committed
38
>>> /usr/local/cuda/bin:...
rusty1s's avatar
rusty1s committed
39
40

$ echo $CPATH
rusty1s's avatar
rusty1s committed
41
>>> /usr/local/cuda/include:...
rusty1s's avatar
rusty1s committed
42
43
44
45
46
```

Then run:

```
rusty1s's avatar
rusty1s committed
47
pip install torch-scatter torch-sparse
rusty1s's avatar
rusty1s committed
48
49
```

rusty1s's avatar
cleanup  
rusty1s committed
50
If you are running into any installation problems, please create an [issue](https://github.com/rusty1s/pytorch_sparse/issues).
rusty1s's avatar
rusty1s committed
51
Be sure to import `torch` first before using this package to resolve symbols the dynamic linker must see.
rusty1s's avatar
links  
rusty1s committed
52

rusty1s's avatar
rusty1s committed
53
## Coalesce
rusty1s's avatar
rusty1s committed
54

rusty1s's avatar
docs  
rusty1s committed
55
```
rusty1s's avatar
rusty1s committed
56
torch_sparse.coalesce(index, value, m, n, op="add", fill_value=0) -> (torch.LongTensor, torch.Tensor)
rusty1s's avatar
docs  
rusty1s committed
57
58
```

rusty1s's avatar
rusty1s committed
59
60
61
62
63
64
65
66
Row-wise sorts `value` and removes duplicate entries.
Duplicate entries are removed by scattering them together.
For scattering, any operation of [`torch_scatter`](https://github.com/rusty1s/pytorch_scatter) can be used.

### Parameters

* **index** *(LongTensor)* - The index tensor of sparse matrix.
* **value** *(Tensor)* - The value tensor of sparse matrix.
rusty1s's avatar
docs  
rusty1s committed
67
68
69
70
* **m** *(int)* - The first dimension of sparse matrix.
* **n** *(int)* - The second dimension of sparse matrix.
* **op** *(string, optional)* - The scatter operation to use. (default: `"add"`)
* **fill_value** *(int, optional)* - The initial fill value of scatter operation. (default: `0`)
rusty1s's avatar
rusty1s committed
71
72
73

### Returns

rusty1s's avatar
docs  
rusty1s committed
74
75
* **index** *(LongTensor)* - The coalesced index tensor of sparse matrix.
* **value** *(Tensor)* - The coalesced value tensor of sparse matrix.
rusty1s's avatar
rusty1s committed
76
77

### Example
rusty1s's avatar
docs  
rusty1s committed
78
79

```python
rusty1s's avatar
rusty1s committed
80
81
82
83
from torch_sparse import coalesce

index = torch.tensor([[1, 0, 1, 0, 2, 1],
                      [0, 1, 1, 1, 0, 0]])
rusty1s's avatar
rusty1s committed
84
value = torch.Tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]])
rusty1s's avatar
docs  
rusty1s committed
85

rusty1s's avatar
rusty1s committed
86
index, value = coalesce(index, value, m=3, n=2)
rusty1s's avatar
docs  
rusty1s committed
87
88
```

rusty1s's avatar
rusty1s committed
89
90
91
92
93
```
print(index)
tensor([[0, 1, 1, 2],
        [1, 0, 1, 0]])
print(value)
rusty1s's avatar
rusty1s committed
94
95
96
97
tensor([[6.0, 8.0],
        [7.0, 9.0],
        [3.0, 4.0],
        [5.0, 6.0]])
rusty1s's avatar
rusty1s committed
98
```
rusty1s's avatar
docs  
rusty1s committed
99

rusty1s's avatar
rusty1s committed
100
## Transpose
rusty1s's avatar
rusty1s committed
101

rusty1s's avatar
docs  
rusty1s committed
102
```
rusty1s's avatar
rusty1s committed
103
torch_sparse.transpose(index, value, m, n) -> (torch.LongTensor, torch.Tensor)
rusty1s's avatar
docs  
rusty1s committed
104
105
```

rusty1s's avatar
rusty1s committed
106
107
108
109
110
111
Transposes dimensions 0 and 1 of a sparse matrix.

### Parameters

* **index** *(LongTensor)* - The index tensor of sparse matrix.
* **value** *(Tensor)* - The value tensor of sparse matrix.
rusty1s's avatar
docs  
rusty1s committed
112
113
* **m** *(int)* - The first dimension of sparse matrix.
* **n** *(int)* - The second dimension of sparse matrix.
rusty1s's avatar
rusty1s committed
114
115
116

### Returns

rusty1s's avatar
docs  
rusty1s committed
117
118
* **index** *(LongTensor)* - The transposed index tensor of sparse matrix.
* **value** *(Tensor)* - The transposed value tensor of sparse matrix.
rusty1s's avatar
rusty1s committed
119
120

### Example
rusty1s's avatar
docs  
rusty1s committed
121
122

```python
rusty1s's avatar
rusty1s committed
123
124
125
126
from torch_sparse import transpose

index = torch.tensor([[1, 0, 1, 0, 2, 1],
                      [0, 1, 1, 1, 0, 0]])
rusty1s's avatar
rusty1s committed
127
value = torch.Tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]])
rusty1s's avatar
docs  
rusty1s committed
128

rusty1s's avatar
docs  
rusty1s committed
129
index, value = transpose(index, value, 3, 2)
rusty1s's avatar
docs  
rusty1s committed
130
131
```

rusty1s's avatar
rusty1s committed
132
133
134
135
136
```
print(index)
tensor([[0, 0, 1, 1],
        [1, 2, 0, 1]])
print(value)
rusty1s's avatar
rusty1s committed
137
138
139
140
tensor([[7.0, 9.0],
        [5.0, 6.0],
        [6.0, 8.0],
        [3.0, 4.0]])
rusty1s's avatar
rusty1s committed
141
```
rusty1s's avatar
docs  
rusty1s committed
142

rusty1s's avatar
rusty1s committed
143
## Sparse Dense Matrix Multiplication
rusty1s's avatar
rusty1s committed
144

rusty1s's avatar
docs  
rusty1s committed
145
```
rusty1s's avatar
rusty1s committed
146
torch_sparse.spmm(index, value, m, matrix) -> torch.Tensor
rusty1s's avatar
docs  
rusty1s committed
147
148
```

rusty1s's avatar
rusty1s committed
149
150
151
Matrix product of a sparse matrix with a dense matrix.

### Parameters
rusty1s's avatar
docs  
rusty1s committed
152

rusty1s's avatar
rusty1s committed
153
154
* **index** *(LongTensor)* - The index tensor of sparse matrix.
* **value** *(Tensor)* - The value tensor of sparse matrix.
rusty1s's avatar
docs  
rusty1s committed
155
156
* **m** *(int)* - The first dimension of sparse matrix.
* **matrix** *(Tensor)* - The dense matrix.
rusty1s's avatar
rusty1s committed
157
158
159

### Returns

rusty1s's avatar
docs  
rusty1s committed
160
* **out** *(Tensor)* - The dense output matrix.
rusty1s's avatar
rusty1s committed
161
162
163
164
165
166
167
168

### Example

```python
from torch_sparse import spmm

index = torch.tensor([[0, 0, 1, 2, 2],
                      [0, 2, 1, 0, 1]])
rusty1s's avatar
rusty1s committed
169
170
value = torch.Tensor([1, 2, 4, 1, 3])
matrix = torch.Tensor([[1, 4], [2, 5], [3, 6]])
rusty1s's avatar
rusty1s committed
171
172
173
174
175
176

out = spmm(index, value, 3, matrix)
```

```
print(out)
177
178
179
tensor([[7.0, 16.0],
        [8.0, 20.0],
        [7.0, 19.0]])
rusty1s's avatar
docs  
rusty1s committed
180
```
rusty1s's avatar
rusty1s committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

## Sparse Sparse Matrix Multiplication

```
torch_sparse.spspmm(indexA, valueA, indexB, valueB, m, k, n) -> (torch.LongTensor, torch.Tensor)
```

Matrix product of two sparse tensors.
Both input sparse matrices need to be **coalesced**.

### Parameters

* **indexA** *(LongTensor)* - The index tensor of first sparse matrix.
* **valueA** *(Tensor)* - The value tensor of first sparse matrix.
* **indexB** *(LongTensor)* - The index tensor of second sparse matrix.
* **valueB** *(Tensor)* - The value tensor of second sparse matrix.
rusty1s's avatar
docs  
rusty1s committed
197
198
199
* **m** *(int)* - The first dimension of first sparse matrix.
* **k** *(int)* - The second dimension of first sparse matrix and first dimension of second sparse matrix.
* **n** *(int)* - The second dimension of second sparse matrix.
rusty1s's avatar
rusty1s committed
200
201
202

### Returns

rusty1s's avatar
docs  
rusty1s committed
203
204
* **index** *(LongTensor)* - The output index tensor of sparse matrix.
* **value** *(Tensor)* - The output value tensor of sparse matrix.
rusty1s's avatar
rusty1s committed
205
206
207
208

### Example

```python
rusty1s's avatar
docs  
rusty1s committed
209
210
from torch_sparse import spspmm

rusty1s's avatar
rusty1s committed
211
indexA = torch.tensor([[0, 0, 1, 2, 2], [1, 2, 0, 0, 1]])
rusty1s's avatar
rusty1s committed
212
valueA = torch.Tensor([1, 2, 3, 4, 5])
rusty1s's avatar
rusty1s committed
213
214

indexB = torch.tensor([[0, 2], [1, 0]])
rusty1s's avatar
rusty1s committed
215
valueB = torch.Tensor([2, 4])
rusty1s's avatar
docs  
rusty1s committed
216

rusty1s's avatar
rusty1s committed
217
218
219
220
221
222
223
224
indexC, valueC = spspmm(indexA, valueA, indexB, valueB, 3, 3, 2)
```

```
print(index)
tensor([[0, 1, 2],
        [0, 1, 1]])
print(value)
225
tensor([8.0, 6.0, 8.0])
rusty1s's avatar
docs  
rusty1s committed
226
227
```

rusty1s's avatar
rusty1s committed
228
229
230
231
232
## Running tests

```
python setup.py test
```