relabel_cpu.cpp 4.17 KB
Newer Older
quyuanhao123's avatar
quyuanhao123 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#include "relabel_cpu.h"

#include "utils.h"

std::tuple<torch::Tensor, torch::Tensor> relabel_cpu(torch::Tensor col,
                                                     torch::Tensor idx) {

  CHECK_CPU(col);
  CHECK_CPU(idx);
  CHECK_INPUT(idx.dim() == 1);

  auto col_data = col.data_ptr<int64_t>();
  auto idx_data = idx.data_ptr<int64_t>();

  std::vector<int64_t> cols;
  std::vector<int64_t> n_ids;
  std::unordered_map<int64_t, int64_t> n_id_map;

  int64_t i;
  for (int64_t n = 0; n < idx.size(0); n++) {
    i = idx_data[n];
    n_id_map[i] = n;
    n_ids.push_back(i);
  }

  int64_t c;
  for (int64_t e = 0; e < col.size(0); e++) {
    c = col_data[e];

    if (n_id_map.count(c) == 0) {
      n_id_map[c] = n_ids.size();
      n_ids.push_back(c);
    }

    cols.push_back(n_id_map[c]);
  }

  int64_t n_len = n_ids.size(), e_len = cols.size();
  auto out_col = torch::from_blob(cols.data(), {e_len}, col.options()).clone();
  auto out_idx = torch::from_blob(n_ids.data(), {n_len}, col.options()).clone();

  return std::make_tuple(out_col, out_idx);
}

std::tuple<torch::Tensor, torch::Tensor, torch::optional<torch::Tensor>,
           torch::Tensor>
relabel_one_hop_cpu(torch::Tensor rowptr, torch::Tensor col,
                    torch::optional<torch::Tensor> optional_value,
                    torch::Tensor idx, bool bipartite) {

  CHECK_CPU(rowptr);
  CHECK_CPU(col);
  if (optional_value.has_value()) {
    CHECK_CPU(optional_value.value());
    CHECK_INPUT(optional_value.value().dim() == 1);
  }
  CHECK_CPU(idx);

  auto rowptr_data = rowptr.data_ptr<int64_t>();
  auto col_data = col.data_ptr<int64_t>();
  auto idx_data = idx.data_ptr<int64_t>();

  std::vector<int64_t> n_ids;
  std::unordered_map<int64_t, int64_t> n_id_map;
  std::unordered_map<int64_t, int64_t>::iterator it;

aiss's avatar
aiss committed
67
  auto out_rowptr = torch::empty({idx.numel() + 1}, rowptr.options());
quyuanhao123's avatar
quyuanhao123 committed
68
69
70
71
72
73
74
75
76
77
78
  auto out_rowptr_data = out_rowptr.data_ptr<int64_t>();

  out_rowptr_data[0] = 0;
  int64_t v, w, c, row_start, row_end, offset = 0;
  for (int64_t i = 0; i < idx.numel(); i++) {
    v = idx_data[i];
    n_id_map[v] = i;
    offset += rowptr_data[v + 1] - rowptr_data[v];
    out_rowptr_data[i + 1] = offset;
  }

aiss's avatar
aiss committed
79
  auto out_col = torch::empty({offset}, col.options());
quyuanhao123's avatar
quyuanhao123 committed
80
81
82
83
  auto out_col_data = out_col.data_ptr<int64_t>();

  torch::optional<torch::Tensor> out_value = torch::nullopt;
  if (optional_value.has_value()) {
aiss's avatar
aiss committed
84
    out_value = torch::empty({offset}, optional_value.value().options());
quyuanhao123's avatar
quyuanhao123 committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

    AT_DISPATCH_ALL_TYPES(optional_value.value().scalar_type(), "relabel", [&] {
      auto value_data = optional_value.value().data_ptr<scalar_t>();
      auto out_value_data = out_value.value().data_ptr<scalar_t>();

      offset = 0;
      for (int64_t i = 0; i < idx.numel(); i++) {
        v = idx_data[i];
        row_start = rowptr_data[v], row_end = rowptr_data[v + 1];

        for (int64_t j = row_start; j < row_end; j++) {
          w = col_data[j];
          it = n_id_map.find(w);
          if (it == n_id_map.end()) {
            c = idx.numel() + n_ids.size();
            n_id_map[w] = c;
            n_ids.push_back(w);
            out_col_data[offset] = c;
          } else {
            out_col_data[offset] = it->second;
          }
          out_value_data[offset] = value_data[j];
          offset++;
        }
      }
    });

  } else {
    offset = 0;
    for (int64_t i = 0; i < idx.numel(); i++) {
      v = idx_data[i];
      row_start = rowptr_data[v], row_end = rowptr_data[v + 1];

      for (int64_t j = row_start; j < row_end; j++) {
        w = col_data[j];
        it = n_id_map.find(w);
        if (it == n_id_map.end()) {
          c = idx.numel() + n_ids.size();
          n_id_map[w] = c;
          n_ids.push_back(w);
          out_col_data[offset] = c;
        } else {
          out_col_data[offset] = it->second;
        }
        offset++;
      }
    }
  }

  if (!bipartite)
    out_rowptr = torch::cat(
        {out_rowptr, torch::full({(int64_t)n_ids.size()}, out_col.numel(),
                                 rowptr.options())});

  idx = torch::cat({idx, torch::from_blob(n_ids.data(), {(int64_t)n_ids.size()},
                                          idx.options())});

  return std::make_tuple(out_rowptr, out_col, out_value, idx);
}