ego_sample_cpu.cpp 4.34 KB
Newer Older
quyuanhao123's avatar
quyuanhao123 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#include "ego_sample_cpu.h"

#include <ATen/Parallel.h>

#include "utils.h"

#ifdef _WIN32
#include <process.h>
#endif

inline torch::Tensor vec2tensor(std::vector<int64_t> vec) {
  return torch::from_blob(vec.data(), {(int64_t)vec.size()}, at::kLong).clone();
}

// Returns `rowptr`, `col`, `n_id`, `e_id`, `ptr`, `root_n_id`
std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor,
           torch::Tensor, torch::Tensor>
ego_k_hop_sample_adj_cpu(torch::Tensor rowptr, torch::Tensor col,
                         torch::Tensor idx, int64_t depth,
                         int64_t num_neighbors, bool replace) {

  std::vector<torch::Tensor> out_rowptrs(idx.numel() + 1);
  std::vector<torch::Tensor> out_cols(idx.numel());
  std::vector<torch::Tensor> out_n_ids(idx.numel());
  std::vector<torch::Tensor> out_e_ids(idx.numel());
  auto out_root_n_id = torch::empty({idx.numel()}, at::kLong);
  out_rowptrs[0] = torch::zeros({1}, at::kLong);

  auto rowptr_data = rowptr.data_ptr<int64_t>();
  auto col_data = col.data_ptr<int64_t>();
  auto idx_data = idx.data_ptr<int64_t>();
  auto out_root_n_id_data = out_root_n_id.data_ptr<int64_t>();

  at::parallel_for(0, idx.numel(), 1, [&](int64_t begin, int64_t end) {
    int64_t row_start, row_end, row_count, vec_start, vec_end, v, w;
    for (int64_t g = begin; g < end; g++) {
      std::set<int64_t> n_id_set;
      n_id_set.insert(idx_data[g]);
      std::vector<int64_t> n_ids;
      n_ids.push_back(idx_data[g]);

      vec_start = 0, vec_end = n_ids.size();
      for (int64_t d = 0; d < depth; d++) {
        for (int64_t i = vec_start; i < vec_end; i++) {
          v = n_ids[i];
          row_start = rowptr_data[v], row_end = rowptr_data[v + 1];
          row_count = row_end - row_start;

          if (row_count <= num_neighbors) {
            for (int64_t e = row_start; e < row_end; e++) {
              w = col_data[e];
              n_id_set.insert(w);
              n_ids.push_back(w);
            }
          } else if (replace) {
            for (int64_t j = 0; j < num_neighbors; j++) {
aiss's avatar
aiss committed
57
              w = col_data[row_start + uniform_randint(row_count)];
quyuanhao123's avatar
quyuanhao123 committed
58
59
60
61
62
63
              n_id_set.insert(w);
              n_ids.push_back(w);
            }
          } else {
            std::unordered_set<int64_t> perm;
            for (int64_t j = row_count - num_neighbors; j < row_count; j++) {
aiss's avatar
aiss committed
64
              if (!perm.insert(uniform_randint(j)).second) {
quyuanhao123's avatar
quyuanhao123 committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
                perm.insert(j);
              }
            }
            for (int64_t j : perm) {
              w = col_data[row_start + j];
              n_id_set.insert(w);
              n_ids.push_back(w);
            }
          }
        }
        vec_start = vec_end;
        vec_end = n_ids.size();
      }

      n_ids.clear();
      std::map<int64_t, int64_t> n_id_map;
      std::map<int64_t, int64_t>::iterator iter;

      int64_t i = 0;
      for (int64_t v : n_id_set) {
        n_ids.push_back(v);
        n_id_map[v] = i;
        i++;
      }

      out_root_n_id_data[g] = n_id_map[idx_data[g]];

      std::vector<int64_t> rowptrs, cols, e_ids;
      for (int64_t v : n_ids) {
        row_start = rowptr_data[v], row_end = rowptr_data[v + 1];
        for (int64_t e = row_start; e < row_end; e++) {
          w = col_data[e];
          iter = n_id_map.find(w);
          if (iter != n_id_map.end()) {
            cols.push_back(iter->second);
            e_ids.push_back(e);
          }
        }
        rowptrs.push_back(cols.size());
      }

      out_rowptrs[g + 1] = vec2tensor(rowptrs);
      out_cols[g] = vec2tensor(cols);
      out_n_ids[g] = vec2tensor(n_ids);
      out_e_ids[g] = vec2tensor(e_ids);
    }
  });

  auto out_ptr = torch::empty({idx.numel() + 1}, at::kLong);
  auto out_ptr_data = out_ptr.data_ptr<int64_t>();
  out_ptr_data[0] = 0;

  int64_t node_cumsum = 0, edge_cumsum = 0;
  for (int64_t g = 1; g < idx.numel(); g++) {
    node_cumsum += out_n_ids[g - 1].numel();
    edge_cumsum += out_cols[g - 1].numel();
    out_rowptrs[g + 1].add_(edge_cumsum);
    out_cols[g].add_(node_cumsum);
    out_ptr_data[g] = node_cumsum;
    out_root_n_id_data[g] += node_cumsum;
  }
  node_cumsum += out_n_ids[idx.numel() - 1].numel();
  out_ptr_data[idx.numel()] = node_cumsum;

  return std::make_tuple(torch::cat(out_rowptrs, 0), torch::cat(out_cols, 0),
                         torch::cat(out_n_ids, 0), torch::cat(out_e_ids, 0),
                         out_ptr, out_root_n_id);
}