matmul.py 9.9 KB
Newer Older
rusty1s's avatar
matmul  
rusty1s committed
1
2
3
4
import warnings
import os.path as osp
from typing import Optional, Union

rusty1s's avatar
rusty1s committed
5
import torch
rusty1s's avatar
matmul  
rusty1s committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
from torch_sparse.tensor import SparseTensor

try:
    torch.ops.load_library(
        osp.join(osp.dirname(osp.abspath(__file__)), '_spmm.so'))
except OSError:
    warnings.warn('Failed to load `spmm` binaries.')

    def spmm_sum_placeholder(row: Optional[torch.Tensor], rowptr: torch.Tensor,
                             col: torch.Tensor, value: Optional[torch.Tensor],
                             colptr: Optional[torch.Tensor],
                             csr2csc: Optional[torch.Tensor],
                             mat: torch.Tensor) -> torch.Tensor:
        raise ImportError
        return mat

22
23
24
25
26
27
28
29
30
31
    def spmm_mean_placeholder(row: Optional[torch.Tensor],
                              rowptr: torch.Tensor, col: torch.Tensor,
                              value: Optional[torch.Tensor],
                              rowcount: Optional[torch.Tensor],
                              colptr: Optional[torch.Tensor],
                              csr2csc: Optional[torch.Tensor],
                              mat: torch.Tensor) -> torch.Tensor:
        raise ImportError
        return mat

rusty1s's avatar
matmul  
rusty1s committed
32
    torch.ops.torch_sparse.spmm_sum = spmm_sum_placeholder
33
    torch.ops.torch_sparse.spmm_mean = spmm_mean_placeholder
rusty1s's avatar
matmul  
rusty1s committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


@torch.jit.script
def spmm_sum(src: SparseTensor, other: torch.Tensor) -> torch.Tensor:
    rowptr, col, value = src.csr()

    row = src.storage._row
    csr2csc = src.storage._csr2csc
    colptr = src.storage._colptr

    if value is not None and value.requires_grad:
        row = src.storage.row()

    if other.requires_grad:
        row = src.storage.row()
        csr2csc = src.storage.csr2csc()
        colptr = src.storage.colptr()

    return torch.ops.torch_sparse.spmm_sum(row, rowptr, col, value, colptr,
                                           csr2csc, other)


@torch.jit.script
def spmm_add(src: SparseTensor, other: torch.Tensor) -> torch.Tensor:
    return spmm_sum(src, other)


61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
@torch.jit.script
def spmm_mean(src: SparseTensor, other: torch.Tensor) -> torch.Tensor:
    rowptr, col, value = src.csr()

    row = src.storage._row
    rowcount = src.storage._rowcount
    csr2csc = src.storage._csr2csc
    colptr = src.storage._colptr

    if value is not None and value.requires_grad:
        row = src.storage.row()

    if other.requires_grad:
        row = src.storage.row()
        rowcount = src.storage.rowcount()
        csr2csc = src.storage.csr2csc()
        colptr = src.storage.colptr()

    return torch.ops.torch_sparse.spmm_mean(row, rowptr, col, value, rowcount,
                                            colptr, csr2csc, other)


rusty1s's avatar
matmul  
rusty1s committed
83
84
85
86
87
@torch.jit.script
def spmm(src: SparseTensor, other: torch.Tensor,
         reduce: str = "sum") -> torch.Tensor:
    if reduce == 'sum' or reduce == 'add':
        return spmm_sum(src, other)
88
89
    elif reduce == 'mean':
        return spmm_mean(src, other)
rusty1s's avatar
matmul  
rusty1s committed
90
91
92
93
94
95
    else:
        raise ValueError


def matmul(src: SparseTensor, other: Union[torch.Tensor, SparseTensor],
           reduce: str = "sum"):
rusty1s's avatar
rusty1s committed
96
    if torch.is_tensor(other):
rusty1s's avatar
matmul  
rusty1s committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
        return spmm(src, other, reduce)
    else:
        raise ValueError


SparseTensor.spmm = lambda self, other, reduce=None: spmm(self, other, reduce)
SparseTensor.matmul = lambda self, other, reduce=None: matmul(
    self, other, reduce)
SparseTensor.__matmul__ = lambda self, other: matmul(self, other, 'sum')

# class SPMM(torch.autograd.Function):
#     @staticmethod
#     def forward(ctx, row, rowptr, col, value, mat, rowcount, colptr, csr2csc,
#                 reduce):
#         if mat.is_cuda:
#             out, arg_out = torch.ops.torch_sparse_cuda.spmm(
#                 rowptr, col, value, mat, reduce)
#         else:
#             out, arg_out = torch.ops.torch_sparse_cpu.spmm(
#                 rowptr, col, value, mat, reduce)

#         ctx.reduce = reduce
#         ctx.save_for_backward(row, rowptr, col, value, mat, rowcount, colptr,
#                               csr2csc, arg_out)

#         if reduce == 'min' or reduce == 'max':
#             ctx.mark_non_differentiable(arg_out)
#             return out, arg_out
#         else:
#             return out

#     @staticmethod
#     def backward(ctx, grad_out, *args):
#         (row, rowptr, col, value, mat, rowcount, colptr, csr2csc,
#          arg_out) = ctx.saved_tensors

#         invalid_arg_mask = arg_out_ind = None
#         if ctx.reduce in ['min', 'max'] and (ctx.needs_input_grad[3]
#                                              or ctx.needs_input_grad[4]):
#             invalid_arg_mask = arg_out == col.size(0)
#             arg_out_ind = arg_out.masked_fill(invalid_arg_mask, -1)

#         grad_value = None
#         if ctx.needs_input_grad[3]:
#             if ctx.reduce in ['sum', 'add', 'mean']:
#                 grad_value = ext(grad_out.is_cuda).spmm_val_bw(
#                     row, rowptr, col, mat, grad_out, ctx.reduce)

#             elif ctx.reduce in ['min', 'max']:
#                 col_tmp = col[arg_out_ind.flatten()].view_as(arg_out)
#                 out = mat.gather(-2, col_tmp).mul_(grad_out)
#                 out.masked_fill_(invalid_arg_mask, 0)
#                 grad_value = scatter_add(out.flatten(), arg_out.flatten(),
#                                          dim=0, dim_size=value.numel() + 1)
#                 grad_value = grad_value[:-1]

#         grad_mat = None
#         if ctx.needs_input_grad[4]:
#             if ctx.reduce in ['sum', 'add']:
#                 value = value[csr2csc] if value is not None else value
#                 grad_mat, _ = ext(grad_out.is_cuda).spmm(
#                     colptr, row[csr2csc], value, grad_out, 'sum')

#             elif ctx.reduce == 'mean':
#                 count = rowcount[row].to(mat.dtype).clamp_(min=1)
#                 value = count.pow_(-1) if value is None else value / count
#                 row = row[csr2csc]
#                 value = value[csr2csc] if value is not None else value
#                 grad_mat, _ = ext(grad_out.is_cuda).spmm(
#                     colptr, row, value, grad_out, 'sum')

#             elif ctx.reduce in ['min', 'max']:
#                 if value is not None:
#                     value = value[arg_out_ind.flatten()].view_as(arg_out)
#                     value = value.mul_(grad_out)
#                 else:
#                     value = grad_out
#                 value.masked_fill_(invalid_arg_mask, 0)
#                 col_tmp = col[arg_out_ind.flatten()].view_as(arg_out)
#                 grad_mat = scatter_add(value, col_tmp, dim=-2,
#                                        dim_size=mat.size(-2))

#         return None, None, None, grad_value, grad_mat, None, None, None, None

# class SPSPMM(torch.autograd.Function):
#     @staticmethod
#     def forward(ctx, rowptrA, colA, valueA, rowptrB, colB, valueB, M, N, K):
#         if rowptrA.is_cuda:
#             rowptrC, colC, valueC = ext(True).spspmm(rowptrA, colA, valueA,
#                                                      rowptrB, colB, valueB, M,
#                                                      N, K)
#         else:
#             dtype = None
#             if valueA is not None:
#                 dtype = valueA.dtype
#             if valueB is not None:
#                 dtype = valueB.dtype

#             if valueA is None:
#                 valueA = torch.ones(colA.numel(), dtype=dtype)
#             A = scipy.sparse.csr_matrix((valueA, colA, rowptrA), (M, N))

#             if valueB is None:
#                 valueB = torch.ones(colB.numel(), dtype=dtype)
#             B = scipy.sparse.csr_matrix((valueB, colB, rowptrB), (N, K))

#             C = A @ B

#             rowptrC = torch.from_numpy(C.indptr).to(torch.int64)
#             colC = torch.from_numpy(C.indices).to(torch.int64)
#             valueC = torch.from_numpy(C.data)
#             valueC = valueC.to(dtype) if dtype is not None else None

#         ctx.mark_non_differentiable(rowptrC, colC)

#         # We cannot return `NoneType` in torch.autograd :(
#         if valueC is None:
#             return rowptrC, colC
#         else:
#             return rowptrC, colC, valueC

#     @staticmethod
#     def backward(ctx, grad_indexC, grad_rowptrC, *args):
#         grad_valueA = None
#         if ctx.needs_input_grad[2]:
#             raise NotImplementedError

#         grad_valueB = None
#         if ctx.needs_input_grad[5]:
#             raise NotImplementedError

#         return (None, None, grad_valueA, None, None, grad_valueB, None, None,
#                 None)

# def matmul(src, other, reduce='sum'):
#     assert src.dim() == 2 and src.size(-1) == other.size(-2)

#     # Sparse-Dense Matrix Multiplication.
#     if torch.is_tensor(other):
#         assert reduce in ['sum', 'add', 'mean', 'min', 'max']
#         rowptr, col, value = src.csr()

#         row = None
#         if reduce in ['sum', 'add', 'mean'] and (src.requires_grad
#                                                  or other.requires_grad):
#             row = src.storage.row

#         rowcount = None
#         if other.requires_grad and reduce in ['mean']:
#             rowcount = src.storage.rowcount

#         csr2csc = colptr = None
#         if other.requires_grad and reduce in ['sum', 'add', 'mean']:
#             csr2csc, colptr = src.storage.csr2csc, src.storage.colptr

#         return SPMM.apply(row, rowptr, col, value, other, rowcount, colptr,
#                           csr2csc, reduce)

#     # Sparse-Sparse Matrix Multiplication.
#     elif isinstance(other, src.__class__):
#         assert reduce in ['sum', 'add']
#         assert src.dim() == 2 and other.dim() == 2
#         data = SPSPMM.apply(*src.csr(), *other.csr(), src.size(0), src.size(1),
#                             other.size(1))
#         (rowptr, col), value = data[:2], data[2] if len(data) == 3 else None
#         sparse_size = torch.Size([src.size(0), other.size(1)])
#         return src.__class__(rowptr=rowptr, col=col, value=value,
#                              sparse_size=sparse_size, is_sorted=True)

#     raise ValueError