spmm_cpu.cpp 4.84 KB
Newer Older
quyuanhao123's avatar
quyuanhao123 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#include "spmm_cpu.h"

#include <ATen/Parallel.h>

#include "reducer.h"
#include "utils.h"

std::tuple<torch::Tensor, torch::optional<torch::Tensor>>
spmm_cpu(torch::Tensor rowptr, torch::Tensor col,
         torch::optional<torch::Tensor> optional_value, torch::Tensor mat,
         std::string reduce) {
  CHECK_CPU(rowptr);
  CHECK_CPU(col);
  if (optional_value.has_value())
    CHECK_CPU(optional_value.value());
  CHECK_CPU(mat);

  CHECK_INPUT(rowptr.dim() == 1);
  CHECK_INPUT(col.dim() == 1);
  if (optional_value.has_value()) {
    CHECK_INPUT(optional_value.value().dim() == 1);
    CHECK_INPUT(optional_value.value().size(0) == col.size(0));
  }
  CHECK_INPUT(mat.dim() >= 2);

  mat = mat.contiguous();

  auto sizes = mat.sizes().vec();
  sizes[mat.dim() - 2] = rowptr.numel() - 1;
  auto out = torch::empty(sizes, mat.options());

  torch::optional<torch::Tensor> arg_out = torch::nullopt;
  int64_t *arg_out_data = nullptr;
  if (reduce2REDUCE.at(reduce) == MIN || reduce2REDUCE.at(reduce) == MAX) {
    arg_out = torch::full_like(out, col.numel(), rowptr.options());
    arg_out_data = arg_out.value().data_ptr<int64_t>();
  }

  auto rowptr_data = rowptr.data_ptr<int64_t>();
  auto col_data = col.data_ptr<int64_t>();

  auto M = rowptr.numel() - 1;
  auto N = mat.size(-2);
  auto K = mat.size(-1);
  auto B = mat.numel() / (N * K);

  AT_DISPATCH_ALL_TYPES_AND(at::ScalarType::Half, mat.scalar_type(), "_", [&] {
    scalar_t *value_data = nullptr;
    auto mat_data = mat.data_ptr<scalar_t>();
    auto out_data = out.data_ptr<scalar_t>();

    AT_DISPATCH_REDUCTION_TYPES(reduce, [&] {
      AT_DISPATCH_HAS_VALUE(optional_value, [&] {
        if (HAS_VALUE) {
          value_data = optional_value.value().data_ptr<scalar_t>();
        }

        int64_t grain_size = at::internal::GRAIN_SIZE /
                             (K * std::max(col.numel() / M, (int64_t)1));
        at::parallel_for(0, B * M, grain_size, [&](int64_t begin, int64_t end) {
          scalar_t val;
          std::vector<scalar_t> vals(K);
          int64_t row_start, row_end, b, m, c;
          std::vector<int64_t> args(K);

          for (auto i = begin; i < end; i++) {
            b = i / M, m = i % M;

            row_start = rowptr_data[m], row_end = rowptr_data[m + 1];

            for (auto k = 0; k < K; k++)
              vals[k] = Reducer<scalar_t, REDUCE>::init();

            auto offset = b * N * K;
            for (auto e = row_start; e < row_end; e++) {
              c = col_data[e];
              if (HAS_VALUE)
                val = value_data[e];
              for (auto k = 0; k < K; k++) {
                if (HAS_VALUE)
                  Reducer<scalar_t, REDUCE>::update(
                      &vals[k], val * mat_data[offset + c * K + k], &args[k],
                      e);
                else
                  Reducer<scalar_t, REDUCE>::update(
                      &vals[k], mat_data[offset + c * K + k], &args[k], e);
              }
            }
            offset = b * M * K + m * K;
            for (auto k = 0; k < K; k++)
              Reducer<scalar_t, REDUCE>::write(out_data + offset + k, vals[k],
                                               arg_out_data + offset + k,
                                               args[k], row_end - row_start);
          }
        });
      });
    });
  });

  return std::make_tuple(out, arg_out);
}

torch::Tensor spmm_value_bw_cpu(torch::Tensor row, torch::Tensor rowptr,
                                torch::Tensor col, torch::Tensor mat,
                                torch::Tensor grad, std::string reduce) {
  CHECK_CPU(row);
  CHECK_CPU(rowptr);
  CHECK_CPU(col);
  CHECK_CPU(mat);
  CHECK_CPU(grad);

  mat = mat.contiguous();
  grad = grad.contiguous();

  auto M = grad.size(-2);
  auto N = mat.size(-2);
  auto E = row.numel();
  auto K = mat.size(-1);
  auto B = mat.numel() / (N * K);

limm's avatar
limm committed
121
  auto out = torch::zeros({row.numel()}, grad.options());
quyuanhao123's avatar
quyuanhao123 committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

  auto row_data = row.data_ptr<int64_t>();
  auto rowptr_data = rowptr.data_ptr<int64_t>();
  auto col_data = col.data_ptr<int64_t>();
  AT_DISPATCH_ALL_TYPES_AND(at::ScalarType::Half, mat.scalar_type(), "_", [&] {
    auto mat_data = mat.data_ptr<scalar_t>();
    auto grad_data = grad.data_ptr<scalar_t>();
    auto out_data = out.data_ptr<scalar_t>();

    scalar_t val;
    int64_t row, col;
    AT_DISPATCH_REDUCTION_TYPES(reduce, [&] {
      for (int b = 0; b < B; b++) {
        for (int e = 0; e < E; e++) {
          row = row_data[e], col = col_data[e], val = (scalar_t)0;
          for (int k = 0; k < K; k++) {
            val += mat_data[b * N * K + col * K + k] *
                   grad_data[b * M * K + row * K + k];
          }
          if (REDUCE == MEAN) {
            int row_start = rowptr_data[row], row_end = rowptr_data[row + 1];
            val /= (scalar_t)std::max(row_end - row_start, 1);
          }
          out_data[e] += val;
        }
      }
    });
  });

  return out;
}