neighbor_sample_cpu.cpp 19.6 KB
Newer Older
quyuanhao123's avatar
quyuanhao123 committed
1
2
3
4
5
6
7
8
9
10
11
12
#include "neighbor_sample_cpu.h"

#include "utils.h"

#ifdef _WIN32
#include <process.h>
#endif

using namespace std;

namespace {

limm's avatar
limm committed
13
14
typedef phmap::flat_hash_map<pair<int64_t, int64_t>, int64_t> temporarl_edge_dict;

quyuanhao123's avatar
quyuanhao123 committed
15
16
17
18
19
20
21
template <bool replace, bool directed>
tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>
sample(const torch::Tensor &colptr, const torch::Tensor &row,
       const torch::Tensor &input_node, const vector<int64_t> num_neighbors) {

  // Initialize some data structures for the sampling process:
  vector<int64_t> samples;
limm's avatar
limm committed
22
  phmap::flat_hash_map<int64_t, int64_t> to_local_node;
quyuanhao123's avatar
quyuanhao123 committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

  auto *colptr_data = colptr.data_ptr<int64_t>();
  auto *row_data = row.data_ptr<int64_t>();
  auto *input_node_data = input_node.data_ptr<int64_t>();

  for (int64_t i = 0; i < input_node.numel(); i++) {
    const auto &v = input_node_data[i];
    samples.push_back(v);
    to_local_node.insert({v, i});
  }

  vector<int64_t> rows, cols, edges;

  int64_t begin = 0, end = samples.size();
  for (int64_t ell = 0; ell < (int64_t)num_neighbors.size(); ell++) {
    const auto &num_samples = num_neighbors[ell];
    for (int64_t i = begin; i < end; i++) {
      const auto &w = samples[i];
      const auto &col_start = colptr_data[w];
      const auto &col_end = colptr_data[w + 1];
      const auto col_count = col_end - col_start;

      if (col_count == 0)
        continue;

      if ((num_samples < 0) || (!replace && (num_samples >= col_count))) {
        for (int64_t offset = col_start; offset < col_end; offset++) {
          const int64_t &v = row_data[offset];
          const auto res = to_local_node.insert({v, samples.size()});
          if (res.second)
            samples.push_back(v);
          if (directed) {
            cols.push_back(i);
            rows.push_back(res.first->second);
            edges.push_back(offset);
          }
        }
      } else if (replace) {
        for (int64_t j = 0; j < num_samples; j++) {
limm's avatar
limm committed
62
          const int64_t offset = col_start + uniform_randint(col_count);
quyuanhao123's avatar
quyuanhao123 committed
63
64
65
66
67
68
69
70
71
72
73
74
75
          const int64_t &v = row_data[offset];
          const auto res = to_local_node.insert({v, samples.size()});
          if (res.second)
            samples.push_back(v);
          if (directed) {
            cols.push_back(i);
            rows.push_back(res.first->second);
            edges.push_back(offset);
          }
        }
      } else {
        unordered_set<int64_t> rnd_indices;
        for (int64_t j = col_count - num_samples; j < col_count; j++) {
limm's avatar
limm committed
76
          int64_t rnd = uniform_randint(j);
quyuanhao123's avatar
quyuanhao123 committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
          if (!rnd_indices.insert(rnd).second) {
            rnd = j;
            rnd_indices.insert(j);
          }
          const int64_t offset = col_start + rnd;
          const int64_t &v = row_data[offset];
          const auto res = to_local_node.insert({v, samples.size()});
          if (res.second)
            samples.push_back(v);
          if (directed) {
            cols.push_back(i);
            rows.push_back(res.first->second);
            edges.push_back(offset);
          }
        }
      }
    }
    begin = end, end = samples.size();
  }

  if (!directed) {
limm's avatar
limm committed
98
    phmap::flat_hash_map<int64_t, int64_t>::iterator iter;
quyuanhao123's avatar
quyuanhao123 committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    for (int64_t i = 0; i < (int64_t)samples.size(); i++) {
      const auto &w = samples[i];
      const auto &col_start = colptr_data[w];
      const auto &col_end = colptr_data[w + 1];
      for (int64_t offset = col_start; offset < col_end; offset++) {
        const auto &v = row_data[offset];
        iter = to_local_node.find(v);
        if (iter != to_local_node.end()) {
          rows.push_back(iter->second);
          cols.push_back(i);
          edges.push_back(offset);
        }
      }
    }
  }

  return make_tuple(from_vector<int64_t>(samples), from_vector<int64_t>(rows),
                    from_vector<int64_t>(cols), from_vector<int64_t>(edges));
}

limm's avatar
limm committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
inline bool satisfy_time(const c10::Dict<node_t, torch::Tensor> &node_time_dict,
                         const node_t &src_node_type, int64_t dst_time,
                         int64_t src_node) {
  try {
    // Check whether src -> dst obeys the time constraint
    const torch::Tensor &src_node_time = node_time_dict.at(src_node_type);
    return src_node_time.data_ptr<int64_t>()[src_node] <= dst_time;
  } catch (const std::out_of_range& e) {
    // If no time is given, fall back to normal sampling
    return true;
  }
}

template <bool replace, bool directed, bool temporal>
quyuanhao123's avatar
quyuanhao123 committed
133
134
135
136
137
138
139
140
tuple<c10::Dict<node_t, torch::Tensor>, c10::Dict<rel_t, torch::Tensor>,
      c10::Dict<rel_t, torch::Tensor>, c10::Dict<rel_t, torch::Tensor>>
hetero_sample(const vector<node_t> &node_types,
              const vector<edge_t> &edge_types,
              const c10::Dict<rel_t, torch::Tensor> &colptr_dict,
              const c10::Dict<rel_t, torch::Tensor> &row_dict,
              const c10::Dict<node_t, torch::Tensor> &input_node_dict,
              const c10::Dict<rel_t, vector<int64_t>> &num_neighbors_dict,
limm's avatar
limm committed
141
              const c10::Dict<node_t, torch::Tensor> &node_time_dict,
quyuanhao123's avatar
quyuanhao123 committed
142
143
144
              const int64_t num_hops) {

  // Create a mapping to convert single string relations to edge type triplets:
limm's avatar
limm committed
145
  phmap::flat_hash_map<rel_t, edge_t> to_edge_type;
quyuanhao123's avatar
quyuanhao123 committed
146
147
148
149
  for (const auto &k : edge_types)
    to_edge_type[get<0>(k) + "__" + get<1>(k) + "__" + get<2>(k)] = k;

  // Initialize some data structures for the sampling process:
limm's avatar
limm committed
150
151
152
153
154
  phmap::flat_hash_map<node_t, vector<int64_t>> samples_dict;
  phmap::flat_hash_map<node_t, vector<pair<int64_t, int64_t>>> temp_samples_dict;
  phmap::flat_hash_map<node_t, phmap::flat_hash_map<int64_t, int64_t>> to_local_node_dict;
  phmap::flat_hash_map<node_t, temporarl_edge_dict> temp_to_local_node_dict;
  phmap::flat_hash_map<node_t, vector<int64_t>> root_time_dict;
quyuanhao123's avatar
quyuanhao123 committed
155
156
  for (const auto &node_type : node_types) {
    samples_dict[node_type];
limm's avatar
limm committed
157
    temp_samples_dict[node_type];
quyuanhao123's avatar
quyuanhao123 committed
158
    to_local_node_dict[node_type];
limm's avatar
limm committed
159
160
    temp_to_local_node_dict[node_type];
    root_time_dict[node_type];
quyuanhao123's avatar
quyuanhao123 committed
161
162
  }

limm's avatar
limm committed
163
  phmap::flat_hash_map<rel_t, vector<int64_t>> rows_dict, cols_dict, edges_dict;
quyuanhao123's avatar
quyuanhao123 committed
164
165
166
167
168
169
170
171
172
173
174
175
176
  for (const auto &kv : colptr_dict) {
    const auto &rel_type = kv.key();
    rows_dict[rel_type];
    cols_dict[rel_type];
    edges_dict[rel_type];
  }

  // Add the input nodes to the output nodes:
  for (const auto &kv : input_node_dict) {
    const auto &node_type = kv.key();
    const torch::Tensor &input_node = kv.value();
    const auto *input_node_data = input_node.data_ptr<int64_t>();

limm's avatar
limm committed
177
178
179
180
181
182
    int64_t *node_time_data;
    if (temporal) {
      const torch::Tensor &node_time = node_time_dict.at(node_type);
      node_time_data = node_time.data_ptr<int64_t>();
    }

quyuanhao123's avatar
quyuanhao123 committed
183
    auto &samples = samples_dict.at(node_type);
limm's avatar
limm committed
184
    auto &temp_samples = temp_samples_dict.at(node_type);
quyuanhao123's avatar
quyuanhao123 committed
185
    auto &to_local_node = to_local_node_dict.at(node_type);
limm's avatar
limm committed
186
187
    auto &temp_to_local_node = temp_to_local_node_dict.at(node_type);
    auto &root_time = root_time_dict.at(node_type);
quyuanhao123's avatar
quyuanhao123 committed
188
189
    for (int64_t i = 0; i < input_node.numel(); i++) {
      const auto &v = input_node_data[i];
limm's avatar
limm committed
190
191
192
193
194
195
196
197
198
      if (temporal) {
        temp_samples.push_back({v, i});
        temp_to_local_node.insert({{v, i}, i});
      } else {
        samples.push_back(v);
        to_local_node.insert({v, i});
      }
      if (temporal)
        root_time.push_back(node_time_data[v]);
quyuanhao123's avatar
quyuanhao123 committed
199
200
201
    }
  }

limm's avatar
limm committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
  phmap::flat_hash_map<node_t, pair<int64_t, int64_t>> slice_dict;
  if (temporal) {
    for (const auto &kv : temp_samples_dict) {
      slice_dict[kv.first] = {0, kv.second.size()};
    }
  } else {
    for (const auto &kv : samples_dict)
      slice_dict[kv.first] = {0, kv.second.size()};
  }

  vector<rel_t> all_rel_types;
  for (const auto &kv : num_neighbors_dict) {
    all_rel_types.push_back(kv.key());
  }
  std::sort(all_rel_types.begin(), all_rel_types.end());
quyuanhao123's avatar
quyuanhao123 committed
217
218

  for (int64_t ell = 0; ell < num_hops; ell++) {
limm's avatar
limm committed
219
    for (const auto &rel_type : all_rel_types) {
quyuanhao123's avatar
quyuanhao123 committed
220
221
222
      const auto &edge_type = to_edge_type[rel_type];
      const auto &src_node_type = get<0>(edge_type);
      const auto &dst_node_type = get<2>(edge_type);
limm's avatar
limm committed
223
      const auto num_samples = num_neighbors_dict.at(rel_type)[ell];
quyuanhao123's avatar
quyuanhao123 committed
224
      const auto &dst_samples = samples_dict.at(dst_node_type);
limm's avatar
limm committed
225
      const auto &temp_dst_samples = temp_samples_dict.at(dst_node_type);
quyuanhao123's avatar
quyuanhao123 committed
226
      auto &src_samples = samples_dict.at(src_node_type);
limm's avatar
limm committed
227
      auto &temp_src_samples = temp_samples_dict.at(src_node_type);
quyuanhao123's avatar
quyuanhao123 committed
228
      auto &to_local_src_node = to_local_node_dict.at(src_node_type);
limm's avatar
limm committed
229
      auto &temp_to_local_src_node = temp_to_local_node_dict.at(src_node_type);
quyuanhao123's avatar
quyuanhao123 committed
230

limm's avatar
limm committed
231
232
233
234
      const torch::Tensor &colptr = colptr_dict.at(rel_type);
      const auto *colptr_data = colptr.data_ptr<int64_t>();
      const torch::Tensor &row = row_dict.at(rel_type);
      const auto *row_data = row.data_ptr<int64_t>();
quyuanhao123's avatar
quyuanhao123 committed
235
236
237
238
239

      auto &rows = rows_dict.at(rel_type);
      auto &cols = cols_dict.at(rel_type);
      auto &edges = edges_dict.at(rel_type);

limm's avatar
limm committed
240
241
242
243
244
      // For temporal sampling, sampled nodes cannot have a timestamp greater
      // than the timestamp of the root nodes:
      const auto &dst_root_time = root_time_dict.at(dst_node_type);
      auto &src_root_time = root_time_dict.at(src_node_type);

quyuanhao123's avatar
quyuanhao123 committed
245
246
247
      const auto &begin = slice_dict.at(dst_node_type).first;
      const auto &end = slice_dict.at(dst_node_type).second;
      for (int64_t i = begin; i < end; i++) {
limm's avatar
limm committed
248
249
250
251
252
        const auto &w = temporal ? temp_dst_samples[i].first : dst_samples[i];
        const int64_t root_w = temporal ? temp_dst_samples[i].second : -1;
        int64_t dst_time = 0;
        if (temporal)
          dst_time = dst_root_time[i];
quyuanhao123's avatar
quyuanhao123 committed
253
254
255
256
257
258
259
260
        const auto &col_start = colptr_data[w];
        const auto &col_end = colptr_data[w + 1];
        const auto col_count = col_end - col_start;

        if (col_count == 0)
          continue;

        if ((num_samples < 0) || (!replace && (num_samples >= col_count))) {
limm's avatar
limm committed
261
          // Select all neighbors:
quyuanhao123's avatar
quyuanhao123 committed
262
263
          for (int64_t offset = col_start; offset < col_end; offset++) {
            const int64_t &v = row_data[offset];
limm's avatar
limm committed
264
265
266
267
268
269
270
271
272
273
274
275
276
            if (temporal) {
              if (!satisfy_time(node_time_dict, src_node_type, dst_time, v))
                continue;
              // force disjoint of computation tree based on source batch idx.
              // note that the sampling always needs to have directed=True
              // for temporal case
              // to_local_src_node is not used for temporal / directed case
              const auto res = temp_to_local_src_node.insert({{v, root_w}, (int64_t)temp_src_samples.size()});
              if (res.second) {
                temp_src_samples.push_back({v, root_w});
                src_root_time.push_back(dst_time);
              }

quyuanhao123's avatar
quyuanhao123 committed
277
278
279
              cols.push_back(i);
              rows.push_back(res.first->second);
              edges.push_back(offset);
limm's avatar
limm committed
280
281
282
283
284
285
286
287
288
            } else {
              const auto res = to_local_src_node.insert({v, src_samples.size()});
              if (res.second)
                src_samples.push_back(v);
              if (directed) {
                cols.push_back(i);
                rows.push_back(res.first->second);
                edges.push_back(offset);
              }
quyuanhao123's avatar
quyuanhao123 committed
289
290
291
            }
          }
        } else if (replace) {
limm's avatar
limm committed
292
293
294
295
          // Sample with replacement:
          int64_t num_neighbors = 0;
          while (num_neighbors < num_samples) {
            const int64_t offset = col_start + uniform_randint(col_count);
quyuanhao123's avatar
quyuanhao123 committed
296
            const int64_t &v = row_data[offset];
limm's avatar
limm committed
297
298
299
300
301
302
303
304
305
306
307
308
309
            if (temporal) {
              // TODO Infinity loop if no neighbor satisfies time constraint:
              if (!satisfy_time(node_time_dict, src_node_type, dst_time, v))
                continue;
              // force disjoint of computation tree based on source batch idx.
              // note that the sampling always needs to have directed=True
              // for temporal case
              const auto res = temp_to_local_src_node.insert({{v, root_w}, (int64_t)temp_src_samples.size()});
              if (res.second) {
                temp_src_samples.push_back({v, root_w});
                src_root_time.push_back(dst_time);
              }

quyuanhao123's avatar
quyuanhao123 committed
310
311
312
              cols.push_back(i);
              rows.push_back(res.first->second);
              edges.push_back(offset);
limm's avatar
limm committed
313
314
315
316
317
318
319
320
321
            } else {
              const auto res = to_local_src_node.insert({v, src_samples.size()});
              if (res.second)
                src_samples.push_back(v);
              if (directed) {
                cols.push_back(i);
                rows.push_back(res.first->second);
                edges.push_back(offset);
              }
quyuanhao123's avatar
quyuanhao123 committed
322
            }
limm's avatar
limm committed
323
            num_neighbors += 1;
quyuanhao123's avatar
quyuanhao123 committed
324
325
          }
        } else {
limm's avatar
limm committed
326
          // Sample without replacement:
quyuanhao123's avatar
quyuanhao123 committed
327
328
          unordered_set<int64_t> rnd_indices;
          for (int64_t j = col_count - num_samples; j < col_count; j++) {
limm's avatar
limm committed
329
            int64_t rnd = uniform_randint(j);
quyuanhao123's avatar
quyuanhao123 committed
330
331
332
333
334
335
            if (!rnd_indices.insert(rnd).second) {
              rnd = j;
              rnd_indices.insert(j);
            }
            const int64_t offset = col_start + rnd;
            const int64_t &v = row_data[offset];
limm's avatar
limm committed
336
337
338
339
340
341
342
343
344
345
346
347
            if (temporal) {
              if (!satisfy_time(node_time_dict, src_node_type, dst_time, v))
                continue;
              // force disjoint of computation tree based on source batch idx.
              // note that the sampling always needs to have directed=True
              // for temporal case
              const auto res = temp_to_local_src_node.insert({{v, root_w}, (int64_t)temp_src_samples.size()});
              if (res.second) {
                temp_src_samples.push_back({v, root_w});
                src_root_time.push_back(dst_time);
              }

quyuanhao123's avatar
quyuanhao123 committed
348
349
350
              cols.push_back(i);
              rows.push_back(res.first->second);
              edges.push_back(offset);
limm's avatar
limm committed
351
352
353
354
355
356
357
358
359
            } else {
              const auto res = to_local_src_node.insert({v, src_samples.size()});
              if (res.second)
                src_samples.push_back(v);
              if (directed) {
                cols.push_back(i);
                rows.push_back(res.first->second);
                edges.push_back(offset);
              }
quyuanhao123's avatar
quyuanhao123 committed
360
361
362
363
364
365
            }
          }
        }
      }
    }

limm's avatar
limm committed
366
367
368
369
370
371
372
    if (temporal) {
      for (const auto &kv : temp_samples_dict) {
        slice_dict[kv.first] = {0, kv.second.size()};
      }
    } else {
      for (const auto &kv : samples_dict)
        slice_dict[kv.first] = {0, kv.second.size()};
quyuanhao123's avatar
quyuanhao123 committed
373
374
375
    }
  }

limm's avatar
limm committed
376
377
  // Temporal sample disable undirected
  assert(!(temporal && !directed));
quyuanhao123's avatar
quyuanhao123 committed
378
  if (!directed) { // Construct the subgraph among the sampled nodes:
limm's avatar
limm committed
379
    phmap::flat_hash_map<int64_t, int64_t>::iterator iter;
quyuanhao123's avatar
quyuanhao123 committed
380
381
382
383
384
385
386
387
388
    for (const auto &kv : colptr_dict) {
      const auto &rel_type = kv.key();
      const auto &edge_type = to_edge_type[rel_type];
      const auto &src_node_type = get<0>(edge_type);
      const auto &dst_node_type = get<2>(edge_type);
      const auto &dst_samples = samples_dict.at(dst_node_type);
      auto &to_local_src_node = to_local_node_dict.at(src_node_type);

      const auto *colptr_data = ((torch::Tensor)kv.value()).data_ptr<int64_t>();
limm's avatar
limm committed
389
390
      const auto *row_data =
          ((torch::Tensor)row_dict.at(rel_type)).data_ptr<int64_t>();
quyuanhao123's avatar
quyuanhao123 committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412

      auto &rows = rows_dict.at(rel_type);
      auto &cols = cols_dict.at(rel_type);
      auto &edges = edges_dict.at(rel_type);

      for (int64_t i = 0; i < (int64_t)dst_samples.size(); i++) {
        const auto &w = dst_samples[i];
        const auto &col_start = colptr_data[w];
        const auto &col_end = colptr_data[w + 1];
        for (int64_t offset = col_start; offset < col_end; offset++) {
          const auto &v = row_data[offset];
          iter = to_local_src_node.find(v);
          if (iter != to_local_src_node.end()) {
            rows.push_back(iter->second);
            cols.push_back(i);
            edges.push_back(offset);
          }
        }
      }
    }
  }

limm's avatar
limm committed
413
414
415
416
417
418
419
420
421
422
423
424
  // Construct samples dictionary from temporal sample dictionary.
  if (temporal) {
    for (const auto &kv : temp_samples_dict) {
      const auto &node_type = kv.first;
      const auto &samples = kv.second;
      samples_dict[node_type].reserve(samples.size());
      for (const auto &v : samples) {
        samples_dict[node_type].push_back(v.first);
      }
    }
  }

quyuanhao123's avatar
quyuanhao123 committed
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
  return make_tuple(from_vector<node_t, int64_t>(samples_dict),
                    from_vector<rel_t, int64_t>(rows_dict),
                    from_vector<rel_t, int64_t>(cols_dict),
                    from_vector<rel_t, int64_t>(edges_dict));
}

} // namespace

tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>
neighbor_sample_cpu(const torch::Tensor &colptr, const torch::Tensor &row,
                    const torch::Tensor &input_node,
                    const vector<int64_t> num_neighbors, const bool replace,
                    const bool directed) {

  if (replace && directed) {
    return sample<true, true>(colptr, row, input_node, num_neighbors);
  } else if (replace && !directed) {
    return sample<true, false>(colptr, row, input_node, num_neighbors);
  } else if (!replace && directed) {
    return sample<false, true>(colptr, row, input_node, num_neighbors);
  } else {
    return sample<false, false>(colptr, row, input_node, num_neighbors);
  }
}

tuple<c10::Dict<node_t, torch::Tensor>, c10::Dict<rel_t, torch::Tensor>,
      c10::Dict<rel_t, torch::Tensor>, c10::Dict<rel_t, torch::Tensor>>
hetero_neighbor_sample_cpu(
    const vector<node_t> &node_types, const vector<edge_t> &edge_types,
    const c10::Dict<rel_t, torch::Tensor> &colptr_dict,
    const c10::Dict<rel_t, torch::Tensor> &row_dict,
    const c10::Dict<node_t, torch::Tensor> &input_node_dict,
    const c10::Dict<rel_t, vector<int64_t>> &num_neighbors_dict,
    const int64_t num_hops, const bool replace, const bool directed) {

limm's avatar
limm committed
460
461
  c10::Dict<node_t, torch::Tensor> node_time_dict; // Empty dictionary.

quyuanhao123's avatar
quyuanhao123 committed
462
  if (replace && directed) {
limm's avatar
limm committed
463
464
465
    return hetero_sample<true, true, false>(
        node_types, edge_types, colptr_dict, row_dict, input_node_dict,
        num_neighbors_dict, node_time_dict, num_hops);
quyuanhao123's avatar
quyuanhao123 committed
466
  } else if (replace && !directed) {
limm's avatar
limm committed
467
468
469
    return hetero_sample<true, false, false>(
        node_types, edge_types, colptr_dict, row_dict, input_node_dict,
        num_neighbors_dict, node_time_dict, num_hops);
quyuanhao123's avatar
quyuanhao123 committed
470
  } else if (!replace && directed) {
limm's avatar
limm committed
471
472
473
    return hetero_sample<false, true, false>(
        node_types, edge_types, colptr_dict, row_dict, input_node_dict,
        num_neighbors_dict, node_time_dict, num_hops);
quyuanhao123's avatar
quyuanhao123 committed
474
  } else {
limm's avatar
limm committed
475
476
477
    return hetero_sample<false, false, false>(
        node_types, edge_types, colptr_dict, row_dict, input_node_dict,
        num_neighbors_dict, node_time_dict, num_hops);
quyuanhao123's avatar
quyuanhao123 committed
478
479
  }
}
limm's avatar
limm committed
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507

tuple<c10::Dict<node_t, torch::Tensor>, c10::Dict<rel_t, torch::Tensor>,
      c10::Dict<rel_t, torch::Tensor>, c10::Dict<rel_t, torch::Tensor>>
hetero_temporal_neighbor_sample_cpu(
    const vector<node_t> &node_types, const vector<edge_t> &edge_types,
    const c10::Dict<rel_t, torch::Tensor> &colptr_dict,
    const c10::Dict<rel_t, torch::Tensor> &row_dict,
    const c10::Dict<node_t, torch::Tensor> &input_node_dict,
    const c10::Dict<rel_t, vector<int64_t>> &num_neighbors_dict,
    const c10::Dict<node_t, torch::Tensor> &node_time_dict,
    const int64_t num_hops, const bool replace, const bool directed) {
  AT_ASSERTM(directed, "Temporal sampling requires 'directed' sampling");
  if (replace) {
    // We assume that directed = True for temporal sampling
    // The current implementation uses disjoint computation trees
    // to tackle the case of the same node sampled having different
    // root time constraint.
    // In future, we could extend to directed = False case,
    // allowing additional edges within each computation tree.
    return hetero_sample<true, true, true>(
        node_types, edge_types, colptr_dict, row_dict, input_node_dict,
        num_neighbors_dict, node_time_dict, num_hops);
  } else {
    return hetero_sample<false, true, true>(
        node_types, edge_types, colptr_dict, row_dict, input_node_dict,
        num_neighbors_dict, node_time_dict, num_hops);
  }
}