cat.py 8.05 KB
Newer Older
Matthias Fey's avatar
Matthias Fey committed
1
from typing import Optional, List, Tuple  # noqa
rusty1s's avatar
rusty1s committed
2

rusty1s's avatar
cat  
rusty1s committed
3
import torch
rusty1s's avatar
rusty1s committed
4
5
from torch_sparse.storage import SparseStorage
from torch_sparse.tensor import SparseTensor
rusty1s's avatar
cat  
rusty1s committed
6
7


rusty1s's avatar
rusty1s committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
@torch.jit._overload  # noqa: F811
def cat(tensors, dim):  # noqa: F811
    # type: (List[SparseTensor], int) -> SparseTensor
    pass


@torch.jit._overload  # noqa: F811
def cat(tensors, dim):  # noqa: F811
    # type: (List[SparseTensor], Tuple[int, int]) -> SparseTensor
    pass


@torch.jit._overload  # noqa: F811
def cat(tensors, dim):  # noqa: F811
    # type: (List[SparseTensor], List[int]) -> SparseTensor
    pass


def cat(tensors, dim):  # noqa: F811
rusty1s's avatar
cat  
rusty1s committed
27
    assert len(tensors) > 0
rusty1s's avatar
rusty1s committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

    if isinstance(dim, int):
        dim = tensors[0].dim() + dim if dim < 0 else dim

        if dim == 0:
            return cat_first(tensors)

        elif dim == 1:
            return cat_second(tensors)
            pass

        elif dim > 1 and dim < tensors[0].dim():
            values = []
            for tensor in tensors:
                value = tensor.storage.value()
                assert value is not None
rusty1s's avatar
rusty1s committed
44
                values.append(value)
rusty1s's avatar
rusty1s committed
45
46
            value = torch.cat(values, dim=dim - 1)
            return tensors[0].set_value(value, layout='coo')
rusty1s's avatar
rusty1s committed
47

rusty1s's avatar
rusty1s committed
48
49
50
51
52
53
54
55
56
57
        else:
            raise IndexError(
                (f'Dimension out of range: Expected to be in range of '
                 f'[{-tensors[0].dim()}, {tensors[0].dim() - 1}], but got '
                 f'{dim}.'))
    else:
        assert isinstance(dim, (tuple, list))
        assert len(dim) == 2
        assert sorted(dim) == [0, 1]
        return cat_diag(tensors)
rusty1s's avatar
rusty1s committed
58
59


rusty1s's avatar
rusty1s committed
60
61
62
63
64
65
66
def cat_first(tensors: List[SparseTensor]) -> SparseTensor:
    rows: List[torch.Tensor] = []
    rowptrs: List[torch.Tensor] = []
    cols: List[torch.Tensor] = []
    values: List[torch.Tensor] = []
    sparse_sizes: List[int] = [0, 0]
    rowcounts: List[torch.Tensor] = []
rusty1s's avatar
rusty1s committed
67

rusty1s's avatar
rusty1s committed
68
69
70
71
72
    nnz: int = 0
    for tensor in tensors:
        row = tensor.storage._row
        if row is not None:
            rows.append(row + sparse_sizes[0])
rusty1s's avatar
rusty1s committed
73

rusty1s's avatar
rusty1s committed
74
75
76
        rowptr = tensor.storage._rowptr
        if rowptr is not None:
            rowptrs.append(rowptr[1:] + nnz if len(rowptrs) > 0 else rowptr)
rusty1s's avatar
rusty1s committed
77

rusty1s's avatar
rusty1s committed
78
        cols.append(tensor.storage._col)
rusty1s's avatar
rusty1s committed
79

rusty1s's avatar
rusty1s committed
80
81
82
        value = tensor.storage._value
        if value is not None:
            values.append(value)
rusty1s's avatar
rusty1s committed
83

rusty1s's avatar
rusty1s committed
84
85
86
        rowcount = tensor.storage._rowcount
        if rowcount is not None:
            rowcounts.append(rowcount)
rusty1s's avatar
cat  
rusty1s committed
87

rusty1s's avatar
rusty1s committed
88
89
90
        sparse_sizes[0] += tensor.sparse_size(0)
        sparse_sizes[1] = max(sparse_sizes[1], tensor.sparse_size(1))
        nnz += tensor.nnz()
rusty1s's avatar
rusty1s committed
91

rusty1s's avatar
rusty1s committed
92
93
94
    row: Optional[torch.Tensor] = None
    if len(rows) == len(tensors):
        row = torch.cat(rows, dim=0)
rusty1s's avatar
rusty1s committed
95

rusty1s's avatar
rusty1s committed
96
97
98
    rowptr: Optional[torch.Tensor] = None
    if len(rowptrs) == len(tensors):
        rowptr = torch.cat(rowptrs, dim=0)
rusty1s's avatar
rusty1s committed
99

rusty1s's avatar
rusty1s committed
100
    col = torch.cat(cols, dim=0)
rusty1s's avatar
rusty1s committed
101

rusty1s's avatar
rusty1s committed
102
103
104
    value: Optional[torch.Tensor] = None
    if len(values) == len(tensors):
        value = torch.cat(values, dim=0)
rusty1s's avatar
rusty1s committed
105

rusty1s's avatar
rusty1s committed
106
107
108
    rowcount: Optional[torch.Tensor] = None
    if len(rowcounts) == len(tensors):
        rowcount = torch.cat(rowcounts, dim=0)
rusty1s's avatar
rusty1s committed
109

rusty1s's avatar
rusty1s committed
110
111
112
113
114
    storage = SparseStorage(row=row, rowptr=rowptr, col=col, value=value,
                            sparse_sizes=(sparse_sizes[0], sparse_sizes[1]),
                            rowcount=rowcount, colptr=None, colcount=None,
                            csr2csc=None, csc2csr=None, is_sorted=True)
    return tensors[0].from_storage(storage)
rusty1s's avatar
rusty1s committed
115
116


rusty1s's avatar
rusty1s committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
def cat_second(tensors: List[SparseTensor]) -> SparseTensor:
    rows: List[torch.Tensor] = []
    cols: List[torch.Tensor] = []
    values: List[torch.Tensor] = []
    sparse_sizes: List[int] = [0, 0]
    colptrs: List[torch.Tensor] = []
    colcounts: List[torch.Tensor] = []

    nnz: int = 0
    for tensor in tensors:
        row, col, value = tensor.coo()
        rows.append(row)
        cols.append(tensor.storage._col + sparse_sizes[1])

        if value is not None:
            values.append(value)
rusty1s's avatar
rusty1s committed
133

rusty1s's avatar
rusty1s committed
134
135
136
        colptr = tensor.storage._colptr
        if colptr is not None:
            colptrs.append(colptr[1:] + nnz if len(colptrs) > 0 else colptr)
rusty1s's avatar
rusty1s committed
137

rusty1s's avatar
rusty1s committed
138
139
140
        colcount = tensor.storage._colcount
        if colcount is not None:
            colcounts.append(colcount)
rusty1s's avatar
rusty1s committed
141

rusty1s's avatar
rusty1s committed
142
143
144
        sparse_sizes[0] = max(sparse_sizes[0], tensor.sparse_size(0))
        sparse_sizes[1] += tensor.sparse_size(1)
        nnz += tensor.nnz()
rusty1s's avatar
rusty1s committed
145

rusty1s's avatar
rusty1s committed
146
147
    row = torch.cat(rows, dim=0)
    col = torch.cat(cols, dim=0)
rusty1s's avatar
rusty1s committed
148

rusty1s's avatar
rusty1s committed
149
150
151
    value: Optional[torch.Tensor] = None
    if len(values) == len(tensors):
        value = torch.cat(values, dim=0)
rusty1s's avatar
rusty1s committed
152

rusty1s's avatar
rusty1s committed
153
154
155
    colptr: Optional[torch.Tensor] = None
    if len(colptrs) == len(tensors):
        colptr = torch.cat(colptrs, dim=0)
rusty1s's avatar
rusty1s committed
156

rusty1s's avatar
rusty1s committed
157
158
159
    colcount: Optional[torch.Tensor] = None
    if len(colcounts) == len(tensors):
        colcount = torch.cat(colcounts, dim=0)
rusty1s's avatar
rusty1s committed
160

rusty1s's avatar
rusty1s committed
161
162
163
164
165
    storage = SparseStorage(row=row, rowptr=None, col=col, value=value,
                            sparse_sizes=(sparse_sizes[0], sparse_sizes[1]),
                            rowcount=None, colptr=colptr, colcount=colcount,
                            csr2csc=None, csc2csr=None, is_sorted=False)
    return tensors[0].from_storage(storage)
rusty1s's avatar
cat  
rusty1s committed
166

rusty1s's avatar
rusty1s committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

def cat_diag(tensors: List[SparseTensor]) -> SparseTensor:
    assert len(tensors) > 0

    rows: List[torch.Tensor] = []
    rowptrs: List[torch.Tensor] = []
    cols: List[torch.Tensor] = []
    values: List[torch.Tensor] = []
    sparse_sizes: List[int] = [0, 0]
    rowcounts: List[torch.Tensor] = []
    colptrs: List[torch.Tensor] = []
    colcounts: List[torch.Tensor] = []
    csr2cscs: List[torch.Tensor] = []
    csc2csrs: List[torch.Tensor] = []

    nnz: int = 0
    for tensor in tensors:
        row = tensor.storage._row
        if row is not None:
            rows.append(row + sparse_sizes[0])

        rowptr = tensor.storage._rowptr
        if rowptr is not None:
rusty1s's avatar
rusty1s committed
190
            rowptrs.append(rowptr[1:] + nnz if len(rowptrs) > 0 else rowptr)
rusty1s's avatar
rusty1s committed
191
192
193
194
195
196
197
198
199
200
201
202
203

        cols.append(tensor.storage._col + sparse_sizes[1])

        value = tensor.storage._value
        if value is not None:
            values.append(value)

        rowcount = tensor.storage._rowcount
        if rowcount is not None:
            rowcounts.append(rowcount)

        colptr = tensor.storage._colptr
        if colptr is not None:
rusty1s's avatar
rusty1s committed
204
            colptrs.append(colptr[1:] + nnz if len(colptrs) > 0 else colptr)
rusty1s's avatar
rusty1s committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

        colcount = tensor.storage._colcount
        if colcount is not None:
            colcounts.append(colcount)

        csr2csc = tensor.storage._csr2csc
        if csr2csc is not None:
            csr2cscs.append(csr2csc + nnz)

        csc2csr = tensor.storage._csc2csr
        if csc2csr is not None:
            csc2csrs.append(csc2csr + nnz)

        sparse_sizes[0] += tensor.sparse_size(0)
        sparse_sizes[1] += tensor.sparse_size(1)
        nnz += tensor.nnz()

    row: Optional[torch.Tensor] = None
    if len(rows) == len(tensors):
        row = torch.cat(rows, dim=0)

    rowptr: Optional[torch.Tensor] = None
    if len(rowptrs) == len(tensors):
        rowptr = torch.cat(rowptrs, dim=0)

    col = torch.cat(cols, dim=0)

    value: Optional[torch.Tensor] = None
    if len(values) == len(tensors):
        value = torch.cat(values, dim=0)

    rowcount: Optional[torch.Tensor] = None
    if len(rowcounts) == len(tensors):
        rowcount = torch.cat(rowcounts, dim=0)

    colptr: Optional[torch.Tensor] = None
    if len(colptrs) == len(tensors):
        colptr = torch.cat(colptrs, dim=0)

    colcount: Optional[torch.Tensor] = None
    if len(colcounts) == len(tensors):
        colcount = torch.cat(colcounts, dim=0)

    csr2csc: Optional[torch.Tensor] = None
    if len(csr2cscs) == len(tensors):
        csr2csc = torch.cat(csr2cscs, dim=0)

    csc2csr: Optional[torch.Tensor] = None
    if len(csc2csrs) == len(tensors):
        csc2csr = torch.cat(csc2csrs, dim=0)

rusty1s's avatar
linting  
rusty1s committed
256
    storage = SparseStorage(row=row, rowptr=rowptr, col=col, value=value,
rusty1s's avatar
rusty1s committed
257
258
259
                            sparse_sizes=(sparse_sizes[0], sparse_sizes[1]),
                            rowcount=rowcount, colptr=colptr,
                            colcount=colcount, csr2csc=csr2csc,
rusty1s's avatar
linting  
rusty1s committed
260
                            csc2csr=csc2csr, is_sorted=True)
rusty1s's avatar
rusty1s committed
261
    return tensors[0].from_storage(storage)