test_tensor.py 2.65 KB
Newer Older
limm's avatar
limm committed
1
2
3
4
5
from itertools import product

import pytest
import torch

limm's avatar
limm committed
6
7
from torch_sparse import SparseTensor
from torch_sparse.testing import devices, grad_dtypes
limm's avatar
limm committed
8
9
10
11
12
13
14
15
16
17


@pytest.mark.parametrize('dtype,device', product(grad_dtypes, devices))
def test_getitem(dtype, device):
    m = 50
    n = 40
    k = 10
    mat = torch.randn(m, n, dtype=dtype, device=device)
    mat = SparseTensor.from_dense(mat)

limm's avatar
limm committed
18
19
    idx1 = torch.randint(0, m, (k, ), dtype=torch.long, device=device)
    idx2 = torch.randint(0, n, (k, ), dtype=torch.long, device=device)
limm's avatar
limm committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    bool1 = torch.zeros(m, dtype=torch.bool, device=device)
    bool2 = torch.zeros(n, dtype=torch.bool, device=device)
    bool1.scatter_(0, idx1, 1)
    bool2.scatter_(0, idx2, 1)
    # idx1 and idx2 may have duplicates
    k1_bool = bool1.nonzero().size(0)
    k2_bool = bool2.nonzero().size(0)

    idx1np = idx1.cpu().numpy()
    idx2np = idx2.cpu().numpy()
    bool1np = bool1.cpu().numpy()
    bool2np = bool2.cpu().numpy()

    idx1list = idx1np.tolist()
    idx2list = idx2np.tolist()
    bool1list = bool1np.tolist()
    bool2list = bool2np.tolist()

    assert mat[:k, :k].sizes() == [k, k]
    assert mat[..., :k].sizes() == [m, k]

    assert mat[idx1, idx2].sizes() == [k, k]
    assert mat[idx1np, idx2np].sizes() == [k, k]
    assert mat[idx1list, idx2list].sizes() == [k, k]

    assert mat[bool1, bool2].sizes() == [k1_bool, k2_bool]
    assert mat[bool1np, bool2np].sizes() == [k1_bool, k2_bool]
    assert mat[bool1list, bool2list].sizes() == [k1_bool, k2_bool]

    assert mat[idx1].sizes() == [k, n]
    assert mat[idx1np].sizes() == [k, n]
    assert mat[idx1list].sizes() == [k, n]

    assert mat[bool1].sizes() == [k1_bool, n]
    assert mat[bool1np].sizes() == [k1_bool, n]
    assert mat[bool1list].sizes() == [k1_bool, n]


@pytest.mark.parametrize('device', devices)
def test_to_symmetric(device):
    row = torch.tensor([0, 0, 0, 1, 1], device=device)
    col = torch.tensor([0, 1, 2, 0, 2], device=device)
    value = torch.arange(1, 6, device=device)
    mat = SparseTensor(row=row, col=col, value=value)
    assert not mat.is_symmetric()

    mat = mat.to_symmetric()

    assert mat.is_symmetric()
    assert mat.to_dense().tolist() == [
        [2, 6, 3],
        [6, 0, 5],
        [3, 5, 0],
    ]


def test_equal():
    row = torch.tensor([0, 0, 0, 1, 1])
    col = torch.tensor([0, 1, 2, 0, 2])
    value = torch.arange(1, 6)
    matA = SparseTensor(row=row, col=col, value=value)
    matB = SparseTensor(row=row, col=col, value=value)
    col = torch.tensor([0, 1, 2, 0, 1])
    matC = SparseTensor(row=row, col=col, value=value)

    assert id(matA) != id(matB)
    assert matA == matB

    assert id(matA) != id(matC)
    assert matA != matC