main.py 4.04 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import time
import os.path as osp
import itertools

import argparse
import wget
import torch
from scipy.io import loadmat

from torch_sparse import spmm_cpu
from torch_sparse.tensor import SparseTensor

short_rows = [
    ('DIMACS10', 'citationCiteseer'),
    ('SNAP', 'web-Stanford'),
]
long_rows = [
    ('Janna', 'StocF-1465'),
    ('GHS_psdef', 'ldoor'),
]


def download(dataset):
    url = 'https://sparse.tamu.edu/mat/{}/{}.mat'
    for group, name in itertools.chain(long_rows, short_rows):
        if not osp.exists(f'{name}.mat'):
            print(f'Downloading {group}/{name}:')
            wget.download(url.format(group, name))
            print('')


def bold(text, flag=True):
    return f'\033[1m{text}\033[0m' if flag else text


@torch.no_grad()
def correctness(dataset):
    pass


def time_func(func, x):
    try:
        if torch.cuda.is_available():
            torch.cuda.synchronize()
        t = time.perf_counter()

        if not args.with_backward:
            with torch.no_grad():
                for _ in range(iters):
                    func(x)
        else:
            x = x.requires_grad_()
            for _ in range(iters):
                out = func(x)
                out = out[0] if isinstance(out, tuple) else out
                torch.autograd.grad(out, x, out, only_inputs=True)

        if torch.cuda.is_available():
            torch.cuda.synchronize()
        return time.perf_counter() - t
    except RuntimeError as e:
        if 'out of memory' not in str(e):
            raise RuntimeError(e)
        torch.cuda.empty_cache()
        return float('inf')


def timing(dataset):
    group, name = dataset
    mat_scipy = loadmat(f'{name}.mat')['Problem'][0][0][2].tocsr()
    row = torch.from_numpy(mat_scipy.tocoo().row).to(args.device, torch.long)
    col = torch.from_numpy(mat_scipy.tocoo().col).to(args.device, torch.long)
    index = torch.stack([row, col], dim=0)
    mat_own = SparseTensor(index, sparse_size=mat_scipy.shape)
    rowptr, col, value = mat_own.csr()
    mat_pytorch = mat_own.to_torch_sparse_coo_tensor().coalesce()

    def spmm_scipy(x):
        return mat_scipy @ x

    def spmm_pytorch(x):
        return mat_pytorch @ x

    def spmm_own(x):
        return spmm_cpu.spmm(rowptr, col, value, x, 'sum')

    t1, t2, t3 = [], [], []

    for size in sizes:
        try:
            x = torch.randn((mat_own.size(1), size), device=args.device)

            t1 += [time_func(spmm_scipy, x)]
            t2 += [time_func(spmm_pytorch, x)]
            t3 += [time_func(spmm_own, x)]

            del x

        except RuntimeError as e:
            if 'out of memory' not in str(e):
                raise RuntimeError(e)
            torch.cuda.empty_cache()
            for t in (t1, t2, t3):
                t.append(float('inf'))

    ts = torch.tensor([t1, t2, t3])
    winner = torch.zeros_like(ts, dtype=torch.bool)
    winner[ts.argmin(dim=0), torch.arange(len(sizes))] = 1
    winner = winner.tolist()

    name = f'{group}/{name}'
    print(f'{bold(name)} (avg row length: {mat_own.avg_row_length():.2f}):')
    print('\t'.join(['            '] + [f'{size:>5}' for size in sizes]))
    print('\t'.join([bold('SPMM SciPy  ')] +
                    [bold(f'{t:.5f}', f) for t, f in zip(t1, winner[0])]))
    print('\t'.join([bold('SPMM PyTorch')] +
                    [bold(f'{t:.5f}', f) for t, f in zip(t2, winner[1])]))
    print('\t'.join([bold('SPMM Own    ')] +
                    [bold(f'{t:.5f}', f) for t, f in zip(t3, winner[2])]))
    print()


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--with_backward', action='store_true')
    parser.add_argument('--device', type=str, default='cuda')
    args = parser.parse_args()
    iters = 1 if args.device == 'cpu' else 20
    sizes = [1, 16, 32, 64, 128, 256, 512]
    sizes = sizes[:4] if args.device == 'cpu' else sizes

    for _ in range(10):  # Warmup.
        torch.randn(100, 100, device=args.device).sum()
    for dataset in itertools.chain(short_rows, long_rows):
        download(dataset)
        correctness(dataset)
        timing(dataset)