Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
torch-scatter
Commits
bed12976
"vscode:/vscode.git/clone" did not exist on "4a1f511685387868c72b8860135bfaf5c8deec79"
Commit
bed12976
authored
Jan 09, 2020
by
rusty1s
Browse files
backward passes
parent
04fe0806
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
45 additions
and
15 deletions
+45
-15
test/test_segment.py
test/test_segment.py
+22
-10
torch_scatter/segment.py
torch_scatter/segment.py
+23
-5
No files found.
test/test_segment.py
View file @
bed12976
...
...
@@ -3,6 +3,7 @@ from itertools import product
import
pytest
import
torch
from
torch_scatter
import
segment_coo
,
segment_csr
from
torch_scatter
import
scatter_add
,
scatter_mean
,
scatter_max
,
scatter_min
from
.utils
import
tensor
...
...
@@ -13,19 +14,30 @@ devices = [torch.device('cuda')]
@
pytest
.
mark
.
skipif
(
not
torch
.
cuda
.
is_available
(),
reason
=
'CUDA not available'
)
@
pytest
.
mark
.
parametrize
(
'dtype,device'
,
product
(
dtypes
,
devices
))
def
test_forward
(
dtype
,
device
):
src
=
tensor
([[
1
,
2
],
[
3
,
4
],
[
5
,
6
],
[
7
,
8
],
[
9
,
10
],
[
11
,
12
]],
dtype
,
device
)
# src = tensor([1, 2, 3, 4, 5, 6], dtype, device)
# src.requires_grad_()
# src = tensor([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]], dtype,
# device)
src
=
tensor
([
1
,
2
,
3
,
4
,
5
,
6
],
dtype
,
device
)
src
.
requires_grad_
()
indptr
=
tensor
([
0
,
2
,
5
,
5
,
6
],
torch
.
long
,
device
)
out
=
segment_csr
(
src
,
indptr
,
reduce
=
'any'
)
print
(
'CSR'
,
out
)
index
=
tensor
([
0
,
0
,
1
,
1
,
1
,
3
],
torch
.
long
,
device
)
out
=
tensor
([
0
,
0
,
0
,
0
],
dtype
,
device
)
out
.
scatter_
(
0
,
index
,
src
)
out
=
scatter_min
(
src
,
index
,
dim
=
0
)[
0
]
grad_out
=
torch
.
randn_like
(
out
)
print
(
grad_out
)
out
.
backward
(
grad_out
)
print
(
src
.
grad
)
src
.
grad
=
None
out
=
segment_csr
(
src
,
indptr
,
reduce
=
'min'
)[
0
]
out
.
backward
(
grad_out
)
print
(
src
.
grad
)
# out = out[0] if isinstance(out, tuple) else out
# out.backward(torch.randn_like(out))
index
=
tensor
([
0
,
0
,
1
,
1
,
1
,
3
],
torch
.
long
,
device
)
out
=
segment_coo
(
src
,
index
,
reduce
=
'any'
)
print
(
'COO'
,
out
)
# out = segment_coo(src, index, reduce='any')
# print('COO', out)
torch_scatter/segment.py
View file @
bed12976
import
torch
if
torch
.
cuda
.
is_available
():
from
torch_scatter
import
segment_cuda
from
torch_scatter
import
segment_cuda
,
gather_cuda
class
SegmentCSR
(
torch
.
autograd
.
Function
):
...
...
@@ -12,25 +12,43 @@ class SegmentCSR(torch.autograd.Function):
if
out
is
not
None
:
ctx
.
mark_dirty
(
out
)
ctx
.
reduce
=
reduce
ctx
.
s
ave_for_backward
(
src
,
indptr
)
ctx
.
s
rc_size
=
list
(
src
.
size
()
)
out
,
arg_out
=
segment_cuda
.
segment_csr
(
src
,
indptr
,
out
,
reduce
)
ctx
.
save_for_backward
(
indptr
,
arg_out
)
return
out
if
arg_out
is
None
else
(
out
,
arg_out
)
@
staticmethod
def
backward
(
ctx
,
grad_out
,
*
args
):
src
,
indptr
=
ctx
.
saved_tensors
(
indptr
,
arg_out
),
src_size
=
ctx
.
saved_tensors
,
ctx
.
src_size
grad_src
=
None
if
ctx
.
needs_input_grad
[
0
]:
grad_src
=
src
if
ctx
.
reduce
==
'any'
or
ctx
.
reduce
==
'add'
:
grad_src
=
gather_cuda
.
gather_csr
(
grad_out
,
indptr
,
grad_out
.
new_empty
(
src_size
))
elif
ctx
.
reduce
==
'mean'
:
grad_src
=
gather_cuda
.
gather_csr
(
grad_out
,
indptr
,
grad_out
.
new_empty
(
src_size
))
indptr1
=
indptr
.
narrow
(
-
1
,
0
,
indptr
.
size
(
-
1
)
-
1
)
indptr2
=
indptr
.
narrow
(
-
1
,
1
,
indptr
.
size
(
-
1
)
-
1
)
count
=
(
indptr2
-
indptr1
).
to
(
grad_src
.
dtype
)
count
=
gather_cuda
.
gather_csr
(
count
,
indptr
,
count
.
new_empty
(
src_size
[:
indptr
.
dim
()]))
grad_src
.
div_
(
count
)
elif
ctx
.
reduce
==
'min'
or
ctx
.
reduce
==
'max'
:
src_size
[
indptr
.
dim
()
-
1
]
+=
1
grad_src
=
grad_out
.
new_zeros
(
src_size
).
scatter_
(
indptr
.
dim
()
-
1
,
arg_out
,
grad_out
)
grad_src
=
grad_src
.
narrow
(
indptr
.
dim
()
-
1
,
0
,
src_size
[
indptr
.
dim
()
-
1
]
-
1
)
return
grad_src
,
None
,
None
,
None
def
segment_coo
(
src
,
index
,
out
=
None
,
dim_size
=
None
,
reduce
=
'add'
):
assert
reduce
in
[
'any'
,
'add'
,
'mean'
,
'min'
,
'max'
]
if
out
is
None
:
# TODO: MOVE TO CPP
if
out
is
None
:
dim_size
=
index
.
max
().
item
()
+
1
if
dim_size
is
None
else
dim_size
size
=
list
(
src
.
size
())
size
[
index
.
dim
()
-
1
]
=
dim_size
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment