min.py 3.89 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
from .scatter import Scatter, scatter
from .ffi import index_backward
rusty1s's avatar
rusty1s committed
3
4
5
from .utils import gen_filled_tensor, gen_output


rusty1s's avatar
rusty1s committed
6
7
8
9
10
11
12
13
14
15
16
17
18
class ScatterMin(Scatter):
    def __init__(self, dim):
        super(ScatterMin, self).__init__('min', dim)

    def save_for_backward_step(self, *data):
        output, index, input, arg = data
        self.save_for_backward(index, arg)

    def backward_step(self, *data):
        grad, index, arg = data
        return index_backward(self.dim, index.data, grad, arg.data)


rusty1s's avatar
rusty1s committed
19
def scatter_min_(output, index, input, dim=0):
rusty1s's avatar
rusty1s committed
20
21
22
23
24
25
26
27
28
29
30
31
    r"""
    |

    .. image:: https://raw.githubusercontent.com/rusty1s/pytorch_scatter/
            master/docs/source/_figures/min.svg?sanitize=true
        :align: center
        :width: 400px

    |

    Minimizes all values from the :attr:`input` tensor into :attr:`output` at
    the indices specified in the :attr:`index` tensor along an given axis
rusty1s's avatar
rusty1s committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
    :attr:`dim`. If multiple indices reference the same location, their
    **contributions minimize** (`cf.` :meth:`~torch_scatter.scatter_add_`).
    The second return value is the index location in :attr:`input` of each
    minimum value found (argmin).

    For one-dimensional tensors, the operation computes

    .. math::
        \mathrm{output}_i = \min(\mathrm{output}_i, \min_j(\mathrm{input}_j))

    where min is over :math:`j` such that :math:`\mathrm{index}_j = i`.

    Args:
        output (Tensor): The destination tensor
        index (LongTensor): The indices of elements to scatter
        input (Tensor): The source tensor
        dim (int, optional): The axis along which to index

    :rtype: (:class:`Tensor`, :class:`LongTensor`)

    .. testsetup::

        import torch

    .. testcode::

        from torch_scatter import scatter_min_
        input =     torch.Tensor([[-2, 0, -1, -4, -3], [0, -2, -1, -3, -4]])
        index = torch.LongTensor([[ 4, 5,  4,  2,  3], [0,  0,  2,  2,  1]])
        output = torch.zeros(2, 6)
        output = scatter_min_(output, index, input, dim=1)
        print(output)

    .. testoutput::

       (
        0  0 -4 -3 -2  0
       -2 -4 -3  0  0  0
       [torch.FloatTensor of size 2x6]
       ,
       -1 -1  3  4  0  1
        1  4  3 -1 -1 -1
       [torch.LongTensor of size 2x6]
       )
    """
rusty1s's avatar
typos  
rusty1s committed
77
    arg = gen_filled_tensor(index, output.size(), fill_value=-1)
rusty1s's avatar
rusty1s committed
78
    return scatter(ScatterMin, 'min', dim, output, index, input, arg)
rusty1s's avatar
rusty1s committed
79
80


rusty1s's avatar
rename  
rusty1s committed
81
def scatter_min(index, input, dim=0, size=None, fill_value=0):
rusty1s's avatar
rusty1s committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
    r"""Minimizes all values from the :attr:`input` tensor at the indices
    specified in the :attr:`index` tensor along an given axis :attr:`dim`
    (`cf.` :meth:`~torch_scatter.scatter_min_` and
    :meth:`~torch_scatter.scatter_add`).

    For one-dimensional tensors, the operation computes

    .. math::
        \mathrm{output}_i = \min(\mathrm{fill\_value},
        \min_j(\mathrm{input}_j))

    where min is over :math:`j` such that :math:`\mathrm{index}_j = i`.

    Args:
        index (LongTensor): The indices of elements to scatter
        input (Tensor): The source tensor
        dim (int, optional): The axis along which to index
        size (int, optional): Output size at dimension :attr:`dim`
        fill_value (int, optional): Initial filling of output tensor

    :rtype: (:class:`Tensor`, :class:`LongTensor`)

    .. testsetup::

        import torch

    .. testcode::

        from torch_scatter import scatter_min
        input =     torch.Tensor([[-2, 0, -1, -4, -3], [0, -2, -1, -3, -4]])
        index = torch.LongTensor([[ 4, 5,  4,  2,  3], [0,  0,  2,  2,  1]])
        output = scatter_min(index, input, dim=1)
        print(output)

    .. testoutput::

       (
        0  0 -4 -3 -2  0
       -2 -4 -3  0  0  0
       [torch.FloatTensor of size 2x6]
       ,
       -1 -1  3  4  0  1
        1  4  3 -1 -1 -1
       [torch.LongTensor of size 2x6]
       )
    """
rusty1s's avatar
rename  
rusty1s committed
128
    output = gen_output(index, input, dim, size, fill_value)
rusty1s's avatar
rusty1s committed
129
    return scatter_min_(output, index, input, dim)