mean.py 2.94 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
from torch.autograd import Function

from .utils.ffi import get_func
from .utils.gen import gen


class ScatterMean(Function):
    @staticmethod
    def forward(ctx, out, src, index, dim):
        count = src.new_zeros(out.size())
        func = get_func('scatter_mean', src)
        func(dim, out, index, src, count)
        count[count == 0] = 1
        out /= count

rusty1s's avatar
rusty1s committed
16
        ctx.mark_dirty(out)
rusty1s's avatar
rusty1s committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
        ctx.save_for_backward(index, count)

        return out

    @staticmethod
    def backward(ctx, grad_out):
        index, count = ctx.saved_variables

        grad_src = None
        if ctx.needs_input_grad[1]:
            grad_src = grad_out[index] / count[index]

        return None, grad_src, None, None


def scatter_mean(src, index, dim=-1, out=None, dim_size=None, fill_value=0):
    r"""
    |

    .. image:: https://raw.githubusercontent.com/rusty1s/pytorch_scatter/
            master/docs/source/_figures/mean.svg?sanitize=true
        :align: center
        :width: 400px

    |

    Averages all values from the :attr:`src` tensor into :attr:`out` at the
    indices specified in the :attr:`index` tensor along an given axis
    :attr:`dim`.If multiple indices reference the same location, their
    **contributions average** (`cf.` :meth:`~torch_scatter.scatter_add`).

    For one-dimensional tensors, the operation computes

    .. math::
        \mathrm{out}_i = \mathrm{out}_i + \frac{1}{N_i} \cdot
        \sum_j \mathrm{src}_j

rusty1s's avatar
rusty1s committed
54
55
    where :math:`\sum` is over :math:`j` such that :math:`\mathrm{index}_j = i`
    add :math:`N_i` indicates the number of indices referencing :math:`i`.
rusty1s's avatar
rusty1s committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

    Args:
        src (Tensor): The source tensor.
        index (LongTensor): The indices of elements to scatter.
        dim (int, optional): The axis along which to index.
            (default: :obj:`-1`)
        out (Tensor, optional): The destination tensor. (default: :obj:`None`)
        dim_size (int, optional): If :attr:`out` is not given, automatically
            create output with size :attr:`dim_size` at dimension :attr:`dim`.
            If :attr:`dim_size` is not given, a minimal sized output tensor is
            returned. (default: :obj:`None`)
        fill_value (int, optional): If :attr:`out` is not given, automatically
            fill output tensor with :attr:`fill_value`. (default: :obj:`0`)

    :rtype: :class:`Tensor`

    .. testsetup::

        import torch

    .. testcode::

        from torch_scatter import scatter_mean
        src = torch.tensor([[2, 0, 1, 4, 3], [0, 2, 1, 3, 4]])
        index = torch.tensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
        out = src.new_zeros((2, 6))
        out = scatter_mean(src, index, out=out)
        print(out)

    .. testoutput::

        0.0000  0.0000  4.0000  3.0000  1.5000  0.0000
        1.0000  4.0000  2.0000  0.0000  0.0000  0.0000
       [torch.FloatTensor of size 2x6]
    """
    src, out, index, dim = gen(src, index, dim, out, dim_size, fill_value)
    return ScatterMean.apply(out, src, index, dim)