segment_coo.cpp 9 KB
Newer Older
quyuanhao123's avatar
quyuanhao123 committed
1
2
3
4
5
6
#include <Python.h>
#include <torch/script.h>

#include "cpu/segment_coo_cpu.h"
#include "utils.h"

yangzhong's avatar
yangzhong committed
7
8
#ifdef WITH_CUDA
#include "cuda/segment_coo_cuda.h"
quyuanhao123's avatar
quyuanhao123 committed
9
10
11
#endif

#ifdef _WIN32
yangzhong's avatar
yangzhong committed
12
#ifdef WITH_CUDA
quyuanhao123's avatar
quyuanhao123 committed
13
14
15
16
17
18
19
20
21
22
23
PyMODINIT_FUNC PyInit__segment_coo_cuda(void) { return NULL; }
#else
PyMODINIT_FUNC PyInit__segment_coo_cpu(void) { return NULL; }
#endif
#endif

std::tuple<torch::Tensor, torch::optional<torch::Tensor>>
segment_coo_fw(torch::Tensor src, torch::Tensor index,
               torch::optional<torch::Tensor> optional_out,
               torch::optional<int64_t> dim_size, std::string reduce) {
  if (src.device().is_cuda()) {
yangzhong's avatar
yangzhong committed
24
#ifdef WITH_CUDA
quyuanhao123's avatar
quyuanhao123 committed
25
26
27
28
29
30
31
32
33
34
35
36
    return segment_coo_cuda(src, index, optional_out, dim_size, reduce);
#else
    AT_ERROR("Not compiled with CUDA support");
#endif
  } else {
    return segment_coo_cpu(src, index, optional_out, dim_size, reduce);
  }
}

torch::Tensor gather_coo_fw(torch::Tensor src, torch::Tensor index,
                            torch::optional<torch::Tensor> optional_out) {
  if (src.device().is_cuda()) {
yangzhong's avatar
yangzhong committed
37
#ifdef WITH_CUDA
quyuanhao123's avatar
quyuanhao123 committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
    return gather_coo_cuda(src, index, optional_out);
#else
    AT_ERROR("Not compiled with CUDA support");
#endif
  } else {
    return gather_coo_cpu(src, index, optional_out);
  }
}

using torch::autograd::AutogradContext;
using torch::autograd::Variable;
using torch::autograd::variable_list;

class SegmentSumCOO : public torch::autograd::Function<SegmentSumCOO> {
public:
  static variable_list forward(AutogradContext *ctx, Variable src,
                               Variable index,
                               torch::optional<Variable> optional_out,
                               torch::optional<int64_t> dim_size) {
    ctx->saved_data["src_shape"] = src.sizes();
    auto result = segment_coo_fw(src, index, optional_out, dim_size, "sum");
    auto out = std::get<0>(result);
    ctx->save_for_backward({index});
    if (optional_out.has_value())
      ctx->mark_dirty({optional_out.value()});
    return {out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto index = saved[0];
    auto src_shape = list2vec(ctx->saved_data["src_shape"].toIntList());
    auto grad_in = torch::empty(src_shape, grad_out.options());
    gather_coo_fw(grad_out, index, grad_in);
    return {grad_in, Variable(), Variable(), Variable()};
  }
};

class SegmentMeanCOO : public torch::autograd::Function<SegmentMeanCOO> {
public:
  static variable_list forward(AutogradContext *ctx, Variable src,
                               Variable index,
                               torch::optional<Variable> optional_out,
                               torch::optional<int64_t> dim_size) {
    ctx->saved_data["src_shape"] = src.sizes();
    auto result = segment_coo_fw(src, index, optional_out, dim_size, "mean");
    auto out = std::get<0>(result);
    auto count = std::get<1>(result).value();
    ctx->save_for_backward({index, count});
    if (optional_out.has_value())
      ctx->mark_dirty({optional_out.value()});
    return {out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto index = saved[0];
    auto count = saved[1];
    auto src_shape = list2vec(ctx->saved_data["src_shape"].toIntList());
    auto grad_in = torch::empty(src_shape, grad_out.options());
    gather_coo_fw(grad_out, index, grad_in);
    count = gather_coo_fw(count, index, torch::nullopt);
    for (auto i = 0; i < grad_out.dim() - index.dim(); i++)
      count = count.unsqueeze(-1);
    grad_in.true_divide_(count);
    return {grad_in, Variable(), Variable(), Variable()};
  }
};

class SegmentMinCOO : public torch::autograd::Function<SegmentMinCOO> {
public:
  static variable_list forward(AutogradContext *ctx, Variable src,
                               Variable index,
                               torch::optional<Variable> optional_out,
                               torch::optional<int64_t> dim_size) {
    ctx->saved_data["src_shape"] = src.sizes();
    auto result = segment_coo_fw(src, index, optional_out, dim_size, "min");
    auto out = std::get<0>(result);
    auto arg_out = std::get<1>(result).value();
    ctx->save_for_backward({index, arg_out});
    ctx->mark_non_differentiable({arg_out});
    if (optional_out.has_value())
      ctx->mark_dirty({optional_out.value()});
    return {out, arg_out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto index = saved[0];
    auto arg_out = saved[1];
    auto src_shape = list2vec(ctx->saved_data["src_shape"].toIntList());
    src_shape[index.dim() - 1] += 1;
    auto grad_in = torch::zeros(src_shape, grad_out.options());
    grad_in.scatter_(index.dim() - 1, arg_out, grad_out);
    grad_in =
        grad_in.narrow(index.dim() - 1, 0, src_shape[index.dim() - 1] - 1);
    return {grad_in, Variable(), Variable(), Variable()};
  }
};

class SegmentMaxCOO : public torch::autograd::Function<SegmentMaxCOO> {
public:
  static variable_list forward(AutogradContext *ctx, Variable src,
                               Variable index,
                               torch::optional<Variable> optional_out,
                               torch::optional<int64_t> dim_size) {
    ctx->saved_data["src_shape"] = src.sizes();
    auto result = segment_coo_fw(src, index, optional_out, dim_size, "max");
    auto out = std::get<0>(result);
    auto arg_out = std::get<1>(result).value();
    ctx->save_for_backward({index, arg_out});
    ctx->mark_non_differentiable({arg_out});
    if (optional_out.has_value())
      ctx->mark_dirty({optional_out.value()});
    return {out, arg_out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto index = saved[0];
    auto arg_out = saved[1];
    auto src_shape = list2vec(ctx->saved_data["src_shape"].toIntList());
    src_shape[index.dim() - 1] += 1;
    auto grad_in = torch::zeros(src_shape, grad_out.options());
    grad_in.scatter_(index.dim() - 1, arg_out, grad_out);
    grad_in =
        grad_in.narrow(index.dim() - 1, 0, src_shape[index.dim() - 1] - 1);
    return {grad_in, Variable(), Variable(), Variable()};
  }
};

class GatherCOO : public torch::autograd::Function<GatherCOO> {
public:
  static variable_list forward(AutogradContext *ctx, Variable src,
                               Variable index,
                               torch::optional<Variable> optional_out) {
    ctx->saved_data["src_shape"] = src.sizes();
    auto out = gather_coo_fw(src, index, optional_out);
    ctx->save_for_backward({index});
    if (optional_out.has_value())
      ctx->mark_dirty({optional_out.value()});
    return {out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto index = saved[0];
    auto src_shape = list2vec(ctx->saved_data["src_shape"].toIntList());

    auto grad_in = torch::zeros(src_shape, grad_out.options());
    segment_coo_fw(grad_out, index, grad_in, torch::nullopt, "sum");
    return {grad_in, Variable(), Variable()};
  }
};

torch::Tensor segment_sum_coo(torch::Tensor src, torch::Tensor index,
                              torch::optional<torch::Tensor> optional_out,
                              torch::optional<int64_t> dim_size) {
  return SegmentSumCOO::apply(src, index, optional_out, dim_size)[0];
}

torch::Tensor segment_mean_coo(torch::Tensor src, torch::Tensor index,
                               torch::optional<torch::Tensor> optional_out,
                               torch::optional<int64_t> dim_size) {
  return SegmentMeanCOO::apply(src, index, optional_out, dim_size)[0];
}

std::tuple<torch::Tensor, torch::Tensor>
segment_min_coo(torch::Tensor src, torch::Tensor index,
                torch::optional<torch::Tensor> optional_out,
                torch::optional<int64_t> dim_size) {
  auto result = SegmentMinCOO::apply(src, index, optional_out, dim_size);
  return std::make_tuple(result[0], result[1]);
}

std::tuple<torch::Tensor, torch::Tensor>
segment_max_coo(torch::Tensor src, torch::Tensor index,
                torch::optional<torch::Tensor> optional_out,
                torch::optional<int64_t> dim_size) {
  auto result = SegmentMaxCOO::apply(src, index, optional_out, dim_size);
  return std::make_tuple(result[0], result[1]);
}

torch::Tensor gather_coo(torch::Tensor src, torch::Tensor index,
                         torch::optional<torch::Tensor> optional_out) {
  return GatherCOO::apply(src, index, optional_out)[0];
}

static auto registry =
    torch::RegisterOperators()
        .op("torch_scatter::segment_sum_coo", &segment_sum_coo)
        .op("torch_scatter::segment_mean_coo", &segment_mean_coo)
        .op("torch_scatter::segment_min_coo", &segment_min_coo)
        .op("torch_scatter::segment_max_coo", &segment_max_coo)
        .op("torch_scatter::gather_coo", &gather_coo);