scatter_cuda.cu 4.32 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
#include "scatter_cuda.h"
quyuanhao123's avatar
quyuanhao123 committed
2

yangzhong's avatar
yangzhong committed
3
4
5
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/detail/IndexUtils.cuh>
#include <ATen/cuda/detail/TensorInfo.cuh>
quyuanhao123's avatar
quyuanhao123 committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

#include "reducer.cuh"
#include "utils.cuh"

#define THREADS 1024
#define BLOCKS(N) (N + THREADS - 1) / THREADS

template <typename scalar_t, ReductionType REDUCE>
__global__ void
scatter_kernel(const scalar_t *src_data,
               const at::cuda::detail::TensorInfo<int64_t, int> index_info,
               scalar_t *out_data, int E, int K, int N, int numel) {

  int thread_idx = blockIdx.x * blockDim.x + threadIdx.x;

  int b = thread_idx / (E * K);
  int k = thread_idx % K;

  if (thread_idx < numel) {
    int offset = at::cuda::detail::IndexToOffset<int64_t, int, -1>::get(
        thread_idx, index_info);
    int64_t idx = index_info.data[offset];

    Reducer<scalar_t, REDUCE>::atomic_write(out_data + b * N * K + idx * K + k,
                                            src_data[thread_idx]);
  }
}

template <typename scalar_t>
__global__ void
scatter_arg_kernel(const scalar_t *src_data,
                   const at::cuda::detail::TensorInfo<int64_t, int> index_info,
                   const scalar_t *out_data, int64_t *arg_out_data, int E,
                   int K, int N, int numel) {

  int thread_idx = blockIdx.x * blockDim.x + threadIdx.x;

  int b = thread_idx / (E * K);
  int e = (thread_idx / K) % E;
  int k = thread_idx % K;

  if (thread_idx < numel) {
    int offset = at::cuda::detail::IndexToOffset<int64_t, int, -1>::get(
        thread_idx, index_info);
    int64_t idx = index_info.data[offset];

    if (src_data[thread_idx] == out_data[b * N * K + idx * K + k]) {
      arg_out_data[b * N * K + idx * K + k] = e;
    }
  }
}

std::tuple<torch::Tensor, torch::optional<torch::Tensor>>
scatter_cuda(torch::Tensor src, torch::Tensor index, int64_t dim,
             torch::optional<torch::Tensor> optional_out,
             torch::optional<int64_t> dim_size, std::string reduce) {
  CHECK_CUDA(src);
  CHECK_CUDA(index);
  if (optional_out.has_value())
    CHECK_CUDA(optional_out.value());
yangzhong's avatar
yangzhong committed
66
  cudaSetDevice(src.get_device());
quyuanhao123's avatar
quyuanhao123 committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

  CHECK_INPUT(src.dim() == index.dim());
  for (auto i = 0; i < index.dim() - 1; i++)
    CHECK_INPUT(src.size(i) >= index.size(i));

  src = src.contiguous();

  torch::Tensor out;
  if (optional_out.has_value()) {
    out = optional_out.value().contiguous();
    for (auto i = 0; i < out.dim(); i++)
      if (i != dim)
        CHECK_INPUT(src.size(i) == out.size(i));
  } else {
    auto sizes = src.sizes().vec();
    if (dim_size.has_value())
      sizes[dim] = dim_size.value();
    else if (index.numel() == 0)
      sizes[dim] = 0;
    else {
      sizes[dim] = 1 + index.max().cpu().data_ptr<int64_t>()[0];
    }
    out = torch::empty(sizes, src.options());
  }

  torch::optional<torch::Tensor> arg_out = torch::nullopt;
  int64_t *arg_out_data = nullptr;
  if (reduce2REDUCE.at(reduce) == MIN || reduce2REDUCE.at(reduce) == MAX) {
    arg_out = torch::full_like(out, src.size(dim), index.options());
    arg_out_data = arg_out.value().data_ptr<int64_t>();
  }

  if (src.numel() == 0) {
    if (!optional_out.has_value())
      out.fill_(0);
    return std::make_tuple(out, arg_out);
  }

  auto B = 1;
  for (auto i = 0; i < dim; i++)
    B *= src.size(i);
  auto E = src.size(dim);
  auto K = src.numel() / (B * E);
  auto N = out.size(dim);

  auto index_info = at::cuda::detail::getTensorInfo<int64_t, int>(index);
  auto stream = at::cuda::getCurrentCUDAStream();
  AT_DISPATCH_ALL_TYPES_AND(at::ScalarType::Half, src.scalar_type(), "_", [&] {
    auto src_data = src.data_ptr<scalar_t>();
    auto out_data = out.data_ptr<scalar_t>();

    AT_DISPATCH_REDUCTION_TYPES(reduce, [&] {
      if (!optional_out.has_value())
        out.fill_(Reducer<scalar_t, REDUCE>::init());

      scatter_kernel<scalar_t, REDUCE>
          <<<BLOCKS(src.numel()), THREADS, 0, stream>>>(
              src_data, index_info, out_data, E, K, N, src.numel());

      if (!optional_out.has_value() && (REDUCE == MIN || REDUCE == MAX))
        out.masked_fill_(out == Reducer<scalar_t, REDUCE>::init(), (scalar_t)0);

      if (REDUCE == MIN || REDUCE == MAX)
        scatter_arg_kernel<scalar_t>
            <<<BLOCKS(src.numel()), THREADS, 0, stream>>>(
                src_data, index_info, out_data, arg_out_data, E, K, N,
                src.numel());
    });
  });

  return std::make_tuple(out, arg_out);
}