test_scatter.py 5.38 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
from itertools import product

import pytest
import torch
from torch.autograd import gradcheck
import torch_scatter

rusty1s's avatar
rusty1s committed
8
from .utils import reductions, tensor, dtypes, devices
rusty1s's avatar
rusty1s committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

tests = [
    {
        'src': [1, 3, 2, 4, 5, 6],
        'index': [0, 1, 0, 1, 1, 3],
        'dim': 0,
        'sum': [3, 12, 0, 6],
        'add': [3, 12, 0, 6],
        'mean': [1.5, 4, 0, 6],
        'min': [1, 3, 0, 6],
        'arg_min': [0, 1, 6, 5],
        'max': [2, 5, 0, 6],
        'arg_max': [2, 4, 6, 5],
    },
    {
        'src': [[1, 2], [5, 6], [3, 4], [7, 8], [9, 10], [11, 12]],
        'index': [0, 1, 0, 1, 1, 3],
        'dim': 0,
        'sum': [[4, 6], [21, 24], [0, 0], [11, 12]],
        'add': [[4, 6], [21, 24], [0, 0], [11, 12]],
        'mean': [[2, 3], [7, 8], [0, 0], [11, 12]],
        'min': [[1, 2], [5, 6], [0, 0], [11, 12]],
        'arg_min': [[0, 0], [1, 1], [6, 6], [5, 5]],
        'max': [[3, 4], [9, 10], [0, 0], [11, 12]],
        'arg_max': [[2, 2], [4, 4], [6, 6], [5, 5]],
    },
    {
        'src': [[1, 5, 3, 7, 9, 11], [2, 4, 8, 6, 10, 12]],
        'index': [[0, 1, 0, 1, 1, 3], [0, 0, 1, 0, 1, 2]],
        'dim': 1,
        'sum': [[4, 21, 0, 11], [12, 18, 12, 0]],
        'add': [[4, 21, 0, 11], [12, 18, 12, 0]],
        'mean': [[2, 7, 0, 11], [4, 9, 12, 0]],
        'min': [[1, 5, 0, 11], [2, 8, 12, 0]],
        'arg_min': [[0, 1, 6, 5], [0, 2, 5, 6]],
        'max': [[3, 9, 0, 11], [6, 10, 12, 0]],
        'arg_max': [[2, 4, 6, 5], [3, 4, 5, 6]],
    },
    {
        'src': [[[1, 2], [5, 6], [3, 4]], [[10, 11], [7, 9], [12, 13]]],
        'index': [[0, 1, 0], [2, 0, 2]],
        'dim': 1,
        'sum': [[[4, 6], [5, 6], [0, 0]], [[7, 9], [0, 0], [22, 24]]],
        'add': [[[4, 6], [5, 6], [0, 0]], [[7, 9], [0, 0], [22, 24]]],
        'mean': [[[2, 3], [5, 6], [0, 0]], [[7, 9], [0, 0], [11, 12]]],
        'min': [[[1, 2], [5, 6], [0, 0]], [[7, 9], [0, 0], [10, 11]]],
        'arg_min': [[[0, 0], [1, 1], [3, 3]], [[1, 1], [3, 3], [0, 0]]],
        'max': [[[3, 4], [5, 6], [0, 0]], [[7, 9], [0, 0], [12, 13]]],
        'arg_max': [[[2, 2], [1, 1], [3, 3]], [[1, 1], [3, 3], [2, 2]]],
    },
    {
        'src': [[1, 3], [2, 4]],
        'index': [[0, 0], [0, 0]],
        'dim': 1,
        'sum': [[4], [6]],
        'add': [[4], [6]],
        'mean': [[2], [3]],
        'min': [[1], [2]],
        'arg_min': [[0], [0]],
        'max': [[3], [4]],
        'arg_max': [[1], [1]],
    },
    {
        'src': [[[1, 1], [3, 3]], [[2, 2], [4, 4]]],
        'index': [[0, 0], [0, 0]],
        'dim': 1,
        'sum': [[[4, 4]], [[6, 6]]],
        'add': [[[4, 4]], [[6, 6]]],
        'mean': [[[2, 2]], [[3, 3]]],
        'min': [[[1, 1]], [[2, 2]]],
        'arg_min': [[[0, 0]], [[0, 0]]],
        'max': [[[3, 3]], [[4, 4]]],
        'arg_max': [[[1, 1]], [[1, 1]]],
    },
]


@pytest.mark.parametrize('test,reduce,dtype,device',
                         product(tests, reductions, dtypes, devices))
def test_forward(test, reduce, dtype, device):
    src = tensor(test['src'], dtype, device)
    index = tensor(test['index'], torch.long, device)
    dim = test['dim']
    expected = tensor(test[reduce], dtype, device)

    out = getattr(torch_scatter, f'scatter_{reduce}')(src, index, dim)
    if isinstance(out, tuple):
        out, arg_out = out
        arg_expected = tensor(test[f'arg_{reduce}'], torch.long, device)
        assert torch.all(arg_out == arg_expected)
    assert torch.all(out == expected)


@pytest.mark.parametrize('test,reduce,device',
                         product(tests, reductions, devices))
def test_backward(test, reduce, device):
    src = tensor(test['src'], torch.double, device)
    src.requires_grad_()
    index = tensor(test['index'], torch.long, device)
    dim = test['dim']

    assert gradcheck(torch_scatter.scatter,
                     (src, index, dim, None, None, reduce))


@pytest.mark.parametrize('test,reduce,dtype,device',
                         product(tests, reductions, dtypes, devices))
def test_out(test, reduce, dtype, device):
    src = tensor(test['src'], dtype, device)
    index = tensor(test['index'], torch.long, device)
    dim = test['dim']
    expected = tensor(test[reduce], dtype, device)

    out = torch.full_like(expected, -2)

    getattr(torch_scatter, f'scatter_{reduce}')(src, index, dim, out)

    if reduce == 'sum' or reduce == 'add':
        expected = expected - 2
    elif reduce == 'mean':
        expected = out  # We can not really test this here.
    elif reduce == 'min':
        expected = expected.fill_(-2)
    elif reduce == 'max':
        expected[expected == 0] = -2
    else:
        raise ValueError

    assert torch.all(out == expected)


@pytest.mark.parametrize('test,reduce,dtype,device',
                         product(tests, reductions, dtypes, devices))
def test_non_contiguous(test, reduce, dtype, device):
    src = tensor(test['src'], dtype, device)
    index = tensor(test['index'], torch.long, device)
    dim = test['dim']
    expected = tensor(test[reduce], dtype, device)

    if src.dim() > 1:
        src = src.transpose(0, 1).contiguous().transpose(0, 1)
    if index.dim() > 1:
        index = index.transpose(0, 1).contiguous().transpose(0, 1)

    out = getattr(torch_scatter, f'scatter_{reduce}')(src, index, dim)
    if isinstance(out, tuple):
        out, arg_out = out
        arg_expected = tensor(test[f'arg_{reduce}'], torch.long, device)
        assert torch.all(arg_out == arg_expected)
    assert torch.all(out == expected)