test_gather.py 3.55 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
from itertools import product

import pytest
import torch
rusty1s's avatar
rusty1s committed
5
from torch.autograd import gradcheck
rusty1s's avatar
rusty1s committed
6
from torch_scatter import gather_csr, gather_coo
rusty1s's avatar
rusty1s committed
7

rusty1s's avatar
rusty1s committed
8
from .utils import tensor, dtypes, devices
rusty1s's avatar
rusty1s committed
9

rusty1s's avatar
rusty1s committed
10
11
devices = ['cpu']

rusty1s's avatar
rusty1s committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
tests = [
    {
        'src': [1, 2, 3, 4],
        'index': [0, 0, 1, 1, 1, 3],
        'indptr': [0, 2, 5, 5, 6],
        'expected': [1, 1, 2, 2, 2, 4],
    },
    {
        'src': [[1, 2], [3, 4], [5, 6], [7, 8]],
        'index': [0, 0, 1, 1, 1, 3],
        'indptr': [0, 2, 5, 5, 6],
        'expected': [[1, 2], [1, 2], [3, 4], [3, 4], [3, 4], [7, 8]]
    },
    {
        'src': [[1, 3, 5, 7], [2, 4, 6, 8]],
        'index': [[0, 0, 1, 1, 1, 3], [0, 0, 0, 1, 1, 2]],
        'indptr': [[0, 2, 5, 5, 6], [0, 3, 5, 6, 6]],
        'expected': [[1, 1, 3, 3, 3, 7], [2, 2, 2, 4, 4, 6]],
    },
    {
        'src': [[[1, 2], [3, 4], [5, 6]], [[7, 9], [10, 11], [12, 13]]],
        'index': [[0, 0, 1], [0, 2, 2]],
        'indptr': [[0, 2, 3, 3], [0, 1, 1, 3]],
        'expected': [[[1, 2], [1, 2], [3, 4]], [[7, 9], [12, 13], [12, 13]]],
    },
    {
        'src': [[1], [2]],
        'index': [[0, 0], [0, 0]],
        'indptr': [[0, 2], [0, 2]],
        'expected': [[1, 1], [2, 2]],
    },
    {
        'src': [[[1, 1]], [[2, 2]]],
        'index': [[0, 0], [0, 0]],
        'indptr': [[0, 2], [0, 2]],
        'expected': [[[1, 1], [1, 1]], [[2, 2], [2, 2]]],
    },
]

rusty1s's avatar
rusty1s committed
51

rusty1s's avatar
rusty1s committed
52
53
54
55
56
57
@pytest.mark.parametrize('test,dtype,device', product(tests, dtypes, devices))
def test_forward(test, dtype, device):
    src = tensor(test['src'], dtype, device)
    index = tensor(test['index'], torch.long, device)
    indptr = tensor(test['indptr'], torch.long, device)
    expected = tensor(test['expected'], dtype, device)
rusty1s's avatar
rusty1s committed
58

rusty1s's avatar
rusty1s committed
59
    out = gather_csr(src, indptr)
rusty1s's avatar
rusty1s committed
60
    assert torch.all(out == expected)
rusty1s's avatar
rusty1s committed
61

rusty1s's avatar
rusty1s committed
62
    out = gather_coo(src, index)
rusty1s's avatar
rusty1s committed
63
64
65
66
67
68
69
70
71
72
73
    assert torch.all(out == expected)


@pytest.mark.parametrize('test,device', product(tests, devices))
def test_backward(test, device):
    src = tensor(test['src'], torch.double, device)
    src.requires_grad_()
    index = tensor(test['index'], torch.long, device)
    indptr = tensor(test['indptr'], torch.long, device)

    assert gradcheck(gather_csr, (src, indptr, None)) is True
rusty1s's avatar
rusty1s committed
74
    assert gradcheck(gather_coo, (src, index, None)) is True
rusty1s's avatar
rusty1s committed
75
76
77


@pytest.mark.parametrize('test,dtype,device', product(tests, dtypes, devices))
rusty1s's avatar
rusty1s committed
78
def test_gather_out(test, dtype, device):
rusty1s's avatar
rusty1s committed
79
80
81
82
83
84
85
86
87
    src = tensor(test['src'], dtype, device)
    index = tensor(test['index'], torch.long, device)
    indptr = tensor(test['indptr'], torch.long, device)
    expected = tensor(test['expected'], dtype, device)

    size = list(src.size())
    size[index.dim() - 1] = index.size(-1)
    out = src.new_full(size, -2)

rusty1s's avatar
rusty1s committed
88
    gather_csr(src, indptr, out)
rusty1s's avatar
rusty1s committed
89
90
91
92
    assert torch.all(out == expected)

    out.fill_(-2)

rusty1s's avatar
rusty1s committed
93
    gather_coo(src, index, out)
rusty1s's avatar
rusty1s committed
94
    assert torch.all(out == expected)
rusty1s's avatar
rusty1s committed
95
96


rusty1s's avatar
rusty1s committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
@pytest.mark.parametrize('test,dtype,device', product(tests, dtypes, devices))
def test_non_contiguous_segment(test, dtype, device):
    src = tensor(test['src'], dtype, device)
    index = tensor(test['index'], torch.long, device)
    indptr = tensor(test['indptr'], torch.long, device)
    expected = tensor(test['expected'], dtype, device)

    if src.dim() > 1:
        src = src.transpose(0, 1).contiguous().transpose(0, 1)
    if index.dim() > 1:
        index = index.transpose(0, 1).contiguous().transpose(0, 1)
    if indptr.dim() > 1:
        indptr = indptr.transpose(0, 1).contiguous().transpose(0, 1)

rusty1s's avatar
rusty1s committed
111
    out = gather_csr(src, indptr)
rusty1s's avatar
rusty1s committed
112
113
    assert torch.all(out == expected)

rusty1s's avatar
rusty1s committed
114
    out = gather_coo(src, index)
rusty1s's avatar
rusty1s committed
115
    assert torch.all(out == expected)