__init__.py 3.27 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
import torch

rusty1s's avatar
rusty1s committed
3
from .scatter import scatter
rusty1s's avatar
cleaner  
rusty1s committed
4
from .utils import gen_filled_tensor, gen_output
rusty1s's avatar
rusty1s committed
5
6
7


def scatter_add_(output, index, input, dim=0):
rusty1s's avatar
doc  
rusty1s committed
8
9
    """If multiple indices reference the same location, their contributions
    add."""
rusty1s's avatar
rusty1s committed
10
    return output.scatter_add_(dim, index, input)
rusty1s's avatar
rusty1s committed
11
12
13
14
15
16
17
18


def scatter_add(index, input, dim=0, max_index=None, fill_value=0):
    output = gen_output(index, input, dim, max_index, fill_value)
    return scatter_add_(output, index, input, dim)


def scatter_sub_(output, index, input, dim=0):
rusty1s's avatar
doc  
rusty1s committed
19
20
    """If multiple indices reference the same location, their negated
    contributions add."""
rusty1s's avatar
rusty1s committed
21
    return output.scatter_add_(dim, index, -input)
rusty1s's avatar
rusty1s committed
22
23
24
25
26
27
28
29


def scatter_sub(index, input, dim=0, max_index=None, fill_value=0):
    output = gen_output(index, input, dim, max_index, fill_value)
    return scatter_sub_(output, index, input, dim)


def scatter_mul_(output, index, input, dim=0):
rusty1s's avatar
doc  
rusty1s committed
30
31
    """If multiple indices reference the same location, their
    contributions multiply."""
rusty1s's avatar
rusty1s committed
32
    return scatter('mul', dim, output, index, input)
rusty1s's avatar
rusty1s committed
33
34
35
36
37
38
39
40


def scatter_mul(index, input, dim=0, max_index=None, fill_value=1):
    output = gen_output(index, input, dim, max_index, fill_value)
    return scatter_mul_(output, index, input, dim)


def scatter_div_(output, index, input, dim=0):
rusty1s's avatar
doc  
rusty1s committed
41
42
    """If multiple indices reference the same location, their
    contributions divide."""
rusty1s's avatar
rusty1s committed
43
    return scatter('div', dim, output, index, input)
rusty1s's avatar
rusty1s committed
44
45
46
47


def scatter_div(index, input, dim=0, max_index=None, fill_value=1):
    output = gen_output(index, input, dim, max_index, fill_value)
rusty1s's avatar
rusty1s committed
48
49
50
51
    scatter_div_(output, index, input, dim)


def scatter_mean_(output, index, input, dim=0):
rusty1s's avatar
doc  
rusty1s committed
52
53
    """If multiple indices reference the same location, their
    contributions average."""
rusty1s's avatar
cleaner  
rusty1s committed
54
    output_count = gen_filled_tensor(output, output.size(), fill_value=0)
rusty1s's avatar
rusty1s committed
55
    scatter('mean', dim, output, index, input, output_count)
rusty1s's avatar
rusty1s committed
56
    output_count[output_count == 0] = 1
rusty1s's avatar
rusty1s committed
57
58
59
60
    output /= output_count
    return output


rusty1s's avatar
cleaner  
rusty1s committed
61
def scatter_mean(index, input, dim=0, max_index=None, fill_value=0):
rusty1s's avatar
rusty1s committed
62
63
    output = gen_output(index, input, dim, max_index, fill_value)
    return scatter_mean_(output, index, input, dim)
rusty1s's avatar
rusty1s committed
64
65


rusty1s's avatar
rusty1s committed
66
def scatter_max_(output, index, input, dim=0):
rusty1s's avatar
doc  
rusty1s committed
67
68
    """If multiple indices reference the same location, the maximal
    contribution gets taken."""
rusty1s's avatar
renames  
rusty1s committed
69
70
    output_arg = gen_filled_tensor(index, output.size(), fill_value=-1)
    return scatter('max', dim, output, index, input, output_arg)
rusty1s's avatar
rusty1s committed
71
72
73
74
75
76
77
78


def scatter_max(index, input, dim=0, max_index=None, fill_value=0):
    output = gen_output(index, input, dim, max_index, fill_value)
    return scatter_max_(output, index, input, dim)


def scatter_min_(output, index, input, dim=0):
rusty1s's avatar
doc  
rusty1s committed
79
80
    """If multiple indices reference the same location, the minimal
    contribution gets taken."""
rusty1s's avatar
renames  
rusty1s committed
81
82
    output_arg = gen_filled_tensor(index, output.size(), fill_value=-1)
    return scatter('min', dim, output, index, input, output_arg)
rusty1s's avatar
rusty1s committed
83
84
85
86
87
88
89


def scatter_min(index, input, dim=0, max_index=None, fill_value=0):
    output = gen_output(index, input, dim, max_index, fill_value)
    return scatter_min_(output, index, input, dim)


rusty1s's avatar
rusty1s committed
90
91
__all__ = [
    'scatter_add_', 'scatter_add', 'scatter_sub_', 'scatter_sub',
rusty1s's avatar
rusty1s committed
92
    'scatter_mul_', 'scatter_mul', 'scatter_div_', 'scatter_div',
rusty1s's avatar
rusty1s committed
93
94
    'scatter_mean_', 'scatter_mean', 'scatter_max_', 'scatter_max',
    'scatter_min_', 'scatter_min'
rusty1s's avatar
rusty1s committed
95
]