"vscode:/vscode.git/clone" did not exist on "13d90b3696037777d2458dd482cd27e1f11f1356"
mean.py 2.34 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
import torch
rusty1s's avatar
rusty1s committed
2

rusty1s's avatar
rusty1s committed
3
from .add import scatter_add
rusty1s's avatar
rusty1s committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27


def scatter_mean(src, index, dim=-1, out=None, dim_size=None, fill_value=0):
    r"""
    |

    .. image:: https://raw.githubusercontent.com/rusty1s/pytorch_scatter/
            master/docs/source/_figures/mean.svg?sanitize=true
        :align: center
        :width: 400px

    |

    Averages all values from the :attr:`src` tensor into :attr:`out` at the
    indices specified in the :attr:`index` tensor along an given axis
    :attr:`dim`.If multiple indices reference the same location, their
    **contributions average** (`cf.` :meth:`~torch_scatter.scatter_add`).

    For one-dimensional tensors, the operation computes

    .. math::
        \mathrm{out}_i = \mathrm{out}_i + \frac{1}{N_i} \cdot
        \sum_j \mathrm{src}_j

rusty1s's avatar
rusty1s committed
28
29
30
    where :math:`\sum_j` is over :math:`j` such that
    :math:`\mathrm{index}_j = i`. :math:`N_i` indicates the number of indices
    referencing :math:`i`.
rusty1s's avatar
rusty1s committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

    Args:
        src (Tensor): The source tensor.
        index (LongTensor): The indices of elements to scatter.
        dim (int, optional): The axis along which to index.
            (default: :obj:`-1`)
        out (Tensor, optional): The destination tensor. (default: :obj:`None`)
        dim_size (int, optional): If :attr:`out` is not given, automatically
            create output with size :attr:`dim_size` at dimension :attr:`dim`.
            If :attr:`dim_size` is not given, a minimal sized output tensor is
            returned. (default: :obj:`None`)
        fill_value (int, optional): If :attr:`out` is not given, automatically
            fill output tensor with :attr:`fill_value`. (default: :obj:`0`)

    :rtype: :class:`Tensor`

    .. testsetup::

        import torch

    .. testcode::

        from torch_scatter import scatter_mean
rusty1s's avatar
rusty1s committed
54
55

        src = torch.tensor([[2, 0, 1, 4, 3], [0, 2, 1, 3, 4]]).float()
rusty1s's avatar
rusty1s committed
56
57
        index = torch.tensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
        out = src.new_zeros((2, 6))
rusty1s's avatar
rusty1s committed
58

rusty1s's avatar
rusty1s committed
59
        out = scatter_mean(src, index, out=out)
rusty1s's avatar
rusty1s committed
60

rusty1s's avatar
rusty1s committed
61
62
63
64
        print(out)

    .. testoutput::

rusty1s's avatar
rusty1s committed
65
66
       tensor([[ 0.0000,  0.0000,  4.0000,  3.0000,  1.5000,  0.0000],
               [ 1.0000,  4.0000,  2.0000,  0.0000,  0.0000,  0.0000]])
rusty1s's avatar
rusty1s committed
67
    """
rusty1s's avatar
rusty1s committed
68
69
70
    out = scatter_add(src, index, dim, out, dim_size, fill_value)
    count = scatter_add(torch.ones_like(src), index, dim, None, out.size(dim))
    return out / count.clamp(min=1)