mul.py 2.81 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
from torch.autograd import Function

rusty1s's avatar
rusty1s committed
3
4
from torch_scatter.utils.ext import get_func
from torch_scatter.utils.gen import gen
rusty1s's avatar
rusty1s committed
5
6
7
8
9


class ScatterMul(Function):
    @staticmethod
    def forward(ctx, out, src, index, dim):
rusty1s's avatar
prints  
rusty1s committed
10
        print("DRIN")
rusty1s's avatar
rusty1s committed
11
        func = get_func('scatter_mul', src)
rusty1s's avatar
prints  
rusty1s committed
12
        print(func)
rusty1s's avatar
rusty1s committed
13
        func(src, index, out, dim)
rusty1s's avatar
prints  
rusty1s committed
14
        print(out)
rusty1s's avatar
rusty1s committed
15
16
17

        ctx.mark_dirty(out)
        ctx.save_for_backward(out, src, index)
rusty1s's avatar
rusty1s committed
18
        ctx.dim = dim
rusty1s's avatar
rusty1s committed
19
20
21
22
23
24
25
26
27

        return out

    @staticmethod
    def backward(ctx, grad_out):
        out, src, index = ctx.saved_variables

        grad_src = None
        if ctx.needs_input_grad[1]:
rusty1s's avatar
rusty1s committed
28
            grad_src = (grad_out * out).gather(ctx.dim, index) / src
rusty1s's avatar
rusty1s committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

        return None, grad_src, None, None


def scatter_mul(src, index, dim=-1, out=None, dim_size=None, fill_value=1):
    r"""
    |

    .. image:: https://raw.githubusercontent.com/rusty1s/pytorch_scatter/
            master/docs/source/_figures/mul.svg?sanitize=true
        :align: center
        :width: 400px

    |

    Multiplies all values from the :attr:`src` tensor into :attr:`out` at the
    indices specified in the :attr:`index` tensor along an given axis
    :attr:`dim`.If multiple indices reference the same location, their
    **contributions multiply** (`cf.` :meth:`~torch_scatter.scatter_add`).

    For one-dimensional tensors, the operation computes

    .. math::
        \mathrm{out}_i = \mathrm{out}_i \cdot \prod_j \mathrm{src}_j

rusty1s's avatar
rusty1s committed
54
    where :math:`\prod_j` is over :math:`j` such that
rusty1s's avatar
rusty1s committed
55
    :math:`\mathrm{index}_j = i`.
rusty1s's avatar
rusty1s committed
56
57
58
59
60
61
62
63
64
65
66
67

    Args:
        src (Tensor): The source tensor.
        index (LongTensor): The indices of elements to scatter.
        dim (int, optional): The axis along which to index.
            (default: :obj:`-1`)
        out (Tensor, optional): The destination tensor. (default: :obj:`None`)
        dim_size (int, optional): If :attr:`out` is not given, automatically
            create output with size :attr:`dim_size` at dimension :attr:`dim`.
            If :attr:`dim_size` is not given, a minimal sized output tensor is
            returned. (default: :obj:`None`)
        fill_value (int, optional): If :attr:`out` is not given, automatically
rusty1s's avatar
typo  
rusty1s committed
68
            fill output tensor with :attr:`fill_value`. (default: :obj:`1`)
rusty1s's avatar
rusty1s committed
69
70
71
72
73
74
75
76
77

    :rtype: :class:`Tensor`

    .. testsetup::

        import torch

    .. testcode::

rusty1s's avatar
rusty1s committed
78
        from torch_scatter import scatter_mul
rusty1s's avatar
rusty1s committed
79

rusty1s's avatar
rusty1s committed
80
        src = torch.tensor([[2, 0, 3, 4, 3], [2, 3, 4, 2, 4]])
rusty1s's avatar
rusty1s committed
81
        index = torch.tensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
rusty1s's avatar
rusty1s committed
82
        out = src.new_ones((2, 6))
rusty1s's avatar
rusty1s committed
83

rusty1s's avatar
rusty1s committed
84
        out = scatter_mul(src, index, out=out)
rusty1s's avatar
rusty1s committed
85

rusty1s's avatar
rusty1s committed
86
87
88
89
        print(out)

    .. testoutput::

rusty1s's avatar
rusty1s committed
90
91
       tensor([[ 1,  1,  4,  3,  6,  0],
               [ 6,  4,  8,  1,  1,  1]])
rusty1s's avatar
rusty1s committed
92
93
94
    """
    src, out, index, dim = gen(src, index, dim, out, dim_size, fill_value)
    return ScatterMul.apply(out, src, index, dim)