segment_csr.py 5.33 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
import warnings
rusty1s's avatar
rusty1s committed
2
import os.path as osp
rusty1s's avatar
rusty1s committed
3
4
5
6
from typing import Optional, Tuple

import torch

rusty1s's avatar
rusty1s committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
try:
    torch.ops.load_library(
        osp.join(osp.dirname(osp.abspath(__file__)), '_segment_csr.so'))
except OSError:
    warnings.warn('Failed to load `segment_csr` binaries.')

    def segment_csr_placeholder(src: torch.Tensor, indptr: torch.Tensor,
                                out: Optional[torch.Tensor]) -> torch.Tensor:
        raise ImportError

    def segment_csr_with_arg_placeholder(
            src: torch.Tensor, indptr: torch.Tensor,
            out: Optional[torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]:
        raise ImportError

    def gather_csr_placeholder(src: torch.Tensor, indptr: torch.Tensor,
                               out: Optional[torch.Tensor]) -> torch.Tensor:
        raise ImportError

    torch.ops.torch_scatter.segment_sum_csr = segment_csr_placeholder
    torch.ops.torch_scatter.segment_mean_csr = segment_csr_placeholder
    torch.ops.torch_scatter.segment_min_csr = segment_csr_with_arg_placeholder
    torch.ops.torch_scatter.segment_max_csr = segment_csr_with_arg_placeholder
    torch.ops.torch_scatter.gather_csr = gather_csr_placeholder
rusty1s's avatar
rusty1s committed
31

rusty1s's avatar
rusty1s committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

@torch.jit.script
def segment_sum_csr(src: torch.Tensor, indptr: torch.Tensor,
                    out: Optional[torch.Tensor] = None) -> torch.Tensor:
    return torch.ops.torch_scatter.segment_sum_csr(src, indptr, out)


@torch.jit.script
def segment_add_csr(src: torch.Tensor, indptr: torch.Tensor,
                    out: Optional[torch.Tensor] = None) -> torch.Tensor:
    return torch.ops.torch_scatter.segment_sum_csr(src, indptr, out)


@torch.jit.script
def segment_mean_csr(src: torch.Tensor, indptr: torch.Tensor,
                     out: Optional[torch.Tensor] = None) -> torch.Tensor:
    return torch.ops.torch_scatter.segment_mean_csr(src, indptr, out)


@torch.jit.script
def segment_min_csr(src: torch.Tensor, indptr: torch.Tensor,
                    out: Optional[torch.Tensor] = None
                    ) -> Tuple[torch.Tensor, torch.Tensor]:
    return torch.ops.torch_scatter.segment_min_csr(src, indptr, out)


@torch.jit.script
def segment_max_csr(src: torch.Tensor, indptr: torch.Tensor,
                    out: Optional[torch.Tensor] = None
                    ) -> Tuple[torch.Tensor, torch.Tensor]:
    return torch.ops.torch_scatter.segment_max_csr(src, indptr, out)


def segment_csr(src: torch.Tensor, indptr: torch.Tensor,
                out: Optional[torch.Tensor] = None,
                reduce: str = "sum") -> torch.Tensor:
rusty1s's avatar
rusty1s committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    r"""
    Reduces all values from the :attr:`src` tensor into :attr:`out` within the
    ranges specified in the :attr:`indptr` tensor along the last dimension of
    :attr:`indptr`.
    For each value in :attr:`src`, its output index is specified by its index
    in :attr:`src` for dimensions outside of :obj:`indptr.dim() - 1` and by the
    corresponding range index in :attr:`indptr` for dimension
    :obj:`indptr.dim() - 1`.
    The applied reduction is defined via the :attr:`reduce` argument.

    Formally, if :attr:`src` and :attr:`indptr` are :math:`n`-dimensional and
    :math:`m`-dimensional tensors with
    size :math:`(x_0, ..., x_{m-1}, x_m, x_{m+1}, ..., x_{n-1})` and
    :math:`(x_0, ..., x_{m-1}, y)`, respectively, then :attr:`out` must be an
    :math:`n`-dimensional tensor with size
    :math:`(x_0, ..., x_{m-1}, y - 1, x_{m+1}, ..., x_{n-1})`.
    Moreover, the values of :attr:`indptr` must be between :math:`0` and
    :math:`x_m` in ascending order.
    The :attr:`indptr` tensor supports broadcasting in case its dimensions do
    not match with :attr:`src`.
rusty1s's avatar
rusty1s committed
88

rusty1s's avatar
rusty1s committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    For one-dimensional tensors with :obj:`reduce="sum"`, the operation
    computes

    .. math::
        \mathrm{out}_i =
        \sum_{j = \mathrm{indptr}[i]}^{\mathrm{indptr}[i+i]}~\mathrm{src}_j.

    Due to the use of index pointers, :meth:`segment_csr` is the fastest
    method to apply for grouped reductions.

    .. note::

        In contrast to :meth:`scatter()` and :meth:`segment_coo`, this
        operation is **fully-deterministic**.

rusty1s's avatar
rusty1s committed
104
105
106
107
108
109
110
111
112
    :param src: The source tensor.
    :param indptr: The index pointers between elements to segment.
        The number of dimensions of :attr:`index` needs to be less than or
        equal to :attr:`src`.
    :param out: The destination tensor.
    :param reduce: The reduce operation (:obj:`"sum"`, :obj:`"mean"`,
        :obj:`"min"` or :obj:`"max"`). (default: :obj:`"sum"`)

    :rtype: :class:`Tensor`
rusty1s's avatar
rusty1s committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

    .. code-block:: python

        from torch_scatter import segment_csr

        src = torch.randn(10, 6, 64)
        indptr = torch.tensor([0, 2, 5, 6])
        indptr = indptr.view(1, -1)  # Broadcasting in the first and last dim.

        out = segment_csr(src, indptr, reduce="sum")

        print(out.size())

    .. code-block::

        torch.Size([10, 3, 64])
    """
rusty1s's avatar
rusty1s committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    if reduce == 'sum' or reduce == 'add':
        return segment_sum_csr(src, indptr, out)
    elif reduce == 'mean':
        return segment_mean_csr(src, indptr, out)
    elif reduce == 'min':
        return segment_min_csr(src, indptr, out)[0]
    elif reduce == 'max':
        return segment_max_csr(src, indptr, out)[0]
    else:
        raise ValueError


@torch.jit.script
def gather_csr(src: torch.Tensor, indptr: torch.Tensor,
               out: Optional[torch.Tensor] = None) -> torch.Tensor:
    return torch.ops.torch_scatter.gather_csr(src, indptr, out)