"...pipelines/deprecated/repaint/pipeline_repaint.py" did not exist on "4a38166afeea498e8d333d40264e778ac5b16d81"
gather.cpp 4.26 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
#include <torch/extension.h>

rusty1s's avatar
rusty1s committed
3
4
5
#include "compat.h"
#include "index_info.h"

rusty1s's avatar
rusty1s committed
6
7
8
9
10
11
12
13
#define CHECK_CPU(x) AT_ASSERTM(!x.type().is_cuda(), #x " must be CPU tensor")

at::Tensor gather_csr(at::Tensor src, at::Tensor indptr,
                      at::optional<at::Tensor> out_opt) {
  CHECK_CPU(src);
  CHECK_CPU(indptr);
  if (out_opt.has_value())
    CHECK_CPU(out_opt.value());
rusty1s's avatar
rusty1s committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

  AT_ASSERTM(src.dim() >= indptr.dim(), "Input mismatch");
  for (int i = 0; i < indptr.dim() - 1; i++)
    AT_ASSERTM(src.size(i) == indptr.size(i), "Input mismatch");

  src = src.contiguous();
  auto gather_dim = indptr.dim() - 1;
  AT_ASSERTM(src.size(gather_dim) == indptr.size(gather_dim) - 1,
             "Input mismatch");

  at::Tensor out;
  if (out_opt.has_value()) {
    out = out_opt.value().contiguous();
    for (int i = 0; i < out.dim(); i++)
      if (i != gather_dim)
        AT_ASSERTM(src.size(i) == out.size(i), "Input mismatch");
  } else {
    auto sizes = src.sizes().vec();
    sizes[gather_dim] = *indptr.flatten()[-1].DATA_PTR<int64_t>();
    out = at::empty(sizes, src.options());
  }

  auto N = src.size(gather_dim) * (indptr.numel() / indptr.size(-1));
  auto K = src.numel() / N;
  auto E = out.size(gather_dim);

  auto indptr_info = getTensorInfo<int64_t>(indptr);
  auto stride = indptr_info.strides[indptr_info.dims - 1];
  AT_DISPATCH_ALL_TYPES(src.scalar_type(), "gather_csr", [&] {
    auto src_data = src.DATA_PTR<scalar_t>();
    auto out_data = out.DATA_PTR<scalar_t>();

    scalar_t vals[K];
    int64_t row_start, row_end;
    for (int n = 0; n < N; n++) {
      int offset = IndexPtrToOffset<int64_t>::get(n, indptr_info);
      row_start = indptr_info.data[offset];
      row_end = indptr_info.data[offset + stride];

      for (int k = 0; k < K; k++) {
        vals[k] = src_data[n * K + k];
      }

      offset = (n / (indptr.size(-1) - 1)) * E * K;
      for (int64_t e = row_start; e < row_end; e++) {
        for (int k = 0; k < K; k++) {
          out_data[offset + e * K + k] = vals[k];
        }
      }
    }
  });

  return out;
rusty1s's avatar
rusty1s committed
67
68
69
70
71
72
73
74
}

at::Tensor gather_coo(at::Tensor src, at::Tensor index,
                      at::optional<at::Tensor> out_opt) {
  CHECK_CPU(src);
  CHECK_CPU(index);
  if (out_opt.has_value())
    CHECK_CPU(out_opt.value());
rusty1s's avatar
rusty1s committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

  AT_ASSERTM(src.dim() >= index.dim(), "Input mismatch");
  for (int i = 0; i < index.dim() - 1; i++)
    AT_ASSERTM(src.size(i) == index.size(i), "Input mismatch");

  src = src.contiguous();
  auto gather_dim = index.dim() - 1;

  at::Tensor out;
  if (out_opt.has_value()) {
    out = out_opt.value().contiguous();
    for (int i = 0; i < index.dim(); i++)
      AT_ASSERTM(out.size(i) == index.size(i), "Input mismatch");
    for (int i = index.dim() + 1; i < src.dim(); i++)
      AT_ASSERTM(out.size(i) == src.size(i), "Input mismatch");
  } else {
    auto sizes = src.sizes().vec();
    sizes[gather_dim] = index.size(gather_dim);
    out = at::empty(sizes, src.options());
  }

  auto E_1 = index.numel() / out.size(gather_dim);
  auto E_2 = index.size(gather_dim);
  auto K = out.numel() / index.numel();
  auto N = src.size(gather_dim);

  auto index_info = getTensorInfo<int64_t>(index);
  auto stride = index_info.strides[index_info.dims - 1];
  AT_DISPATCH_ALL_TYPES(src.scalar_type(), "gather_coo", [&] {
    auto src_data = src.DATA_PTR<scalar_t>();
    auto out_data = out.DATA_PTR<scalar_t>();

    scalar_t vals[K];
    int64_t idx, next_idx;
    for (int e_1 = 0; e_1 < E_1; e_1++) {
      int offset = IndexToOffset<int64_t>::get(e_1 * E_2, index_info);
      idx = index_info.data[offset];

      for (int k = 0; k < K; k++) {
        vals[k] = src_data[e_1 * N * K + idx * K + k];
      }

      for (int e_2 = 0; e_2 < E_2; e_2++) {
        for (int k = 0; k < K; k++) {
          out_data[e_1 * E_2 * K + e_2 * K + k] = vals[k];
        }

        if (e_2 < E_2 - 1) {
          next_idx = index_info.data[offset + (e_2 + 1) * stride];
          assert(idx <= next_idx);

          if (idx != next_idx) {
            idx = next_idx;
            for (int k = 0; k < K; k++) {
              vals[k] = src_data[e_1 * N * K + idx * K + k];
            }
          }
        }
      }
    }
  });

  return out;
rusty1s's avatar
rusty1s committed
138
139
140
141
142
143
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  m.def("gather_csr", &gather_csr, "Gather CSR (CPU)");
  m.def("gather_coo", &gather_coo, "Gather COO (CPU)");
}