test_backward.py 1.67 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
from itertools import product

import pytest
import torch
rusty1s's avatar
rusty1s committed
5
# from torch.autograd import gradcheck
rusty1s's avatar
rusty1s committed
6
7
import torch_scatter

rusty1s's avatar
rusty1s committed
8
from .utils import grad_dtypes as dtypes, devices, tensor
rusty1s's avatar
rusty1s committed
9

rusty1s's avatar
rusty1s committed
10
funcs = ['add', 'sub', 'mul', 'div', 'mean']
rusty1s's avatar
rusty1s committed
11
indices = [2, 0, 1, 1, 0]
rusty1s's avatar
rusty1s committed
12

rusty1s's avatar
rusty1s committed
13
14
15

@pytest.mark.parametrize('func,device', product(funcs, devices))
def test_backward(func, device):
rusty1s's avatar
rusty1s committed
16
17
18
19
    pass
    # index = torch.tensor(indices, dtype=torch.long, device=device)
    # src = torch.rand((index.size(0), 2), dtype=torch.double, device=device)
    # src.requires_grad_()
rusty1s's avatar
rusty1s committed
20

rusty1s's avatar
rusty1s committed
21
22
23
    # op = getattr(torch_scatter, 'scatter_{}'.format(func))
    # data = (src, index, 0)
    # assert gradcheck(op, data, eps=1e-6, atol=1e-4) is True
rusty1s's avatar
rusty1s committed
24

rusty1s's avatar
rusty1s committed
25
26
27

tests = [{
    'name': 'max',
rusty1s's avatar
rusty1s committed
28
    'src': [[1, 1], [2, 2], [3, 3], [4, 4], [5, 5]],
rusty1s's avatar
rusty1s committed
29
30
31
    'index': [2, 0, 1, 1, 0],
    'dim': 0,
    'fill_value': 0,
rusty1s's avatar
rusty1s committed
32
33
    'grad': [[4, 4], [8, 8], [6, 6]],
    'expected': [[6, 6], [0, 0], [0, 0], [8, 8], [4, 4]],
rusty1s's avatar
rusty1s committed
34
35
}, {
    'name': 'min',
rusty1s's avatar
rusty1s committed
36
    'src': [[1, 1], [2, 2], [3, 3], [4, 4], [5, 5]],
rusty1s's avatar
rusty1s committed
37
38
39
    'index': [2, 0, 1, 1, 0],
    'dim': 0,
    'fill_value': 3,
rusty1s's avatar
rusty1s committed
40
41
    'grad': [[4, 4], [8, 8], [6, 6]],
    'expected': [[6, 6], [4, 4], [8, 8], [0, 0], [0, 0]],
rusty1s's avatar
rusty1s committed
42
43
44
45
46
}]


@pytest.mark.parametrize('test,dtype,device', product(tests, dtypes, devices))
def test_arg_backward(test, dtype, device):
rusty1s's avatar
rusty1s committed
47
48
49
50
51
52
53
54
55
56
    pass
    # src = tensor(test['src'], dtype, device)
    # src.requires_grad_()
    # index = tensor(test['index'], torch.long, device)
    # grad = tensor(test['grad'], dtype, device)

    # op = getattr(torch_scatter, 'scatter_{}'.format(test['name']))
    # out, _ = op(src, index, test['dim'], fill_value=test['fill_value'])
    # out.backward(grad)
    # assert src.grad.tolist() == test['expected']