README.md 5.52 KB
Newer Older
quyuanhao123's avatar
quyuanhao123 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
[pypi-image]: https://badge.fury.io/py/torch-scatter.svg
[pypi-url]: https://pypi.python.org/pypi/torch-scatter
[testing-image]: https://github.com/rusty1s/pytorch_scatter/actions/workflows/testing.yml/badge.svg
[testing-url]: https://github.com/rusty1s/pytorch_scatter/actions/workflows/testing.yml
[linting-image]: https://github.com/rusty1s/pytorch_scatter/actions/workflows/linting.yml/badge.svg
[linting-url]: https://github.com/rusty1s/pytorch_scatter/actions/workflows/linting.yml
[docs-image]: https://readthedocs.org/projects/pytorch-scatter/badge/?version=latest
[docs-url]: https://pytorch-scatter.readthedocs.io/en/latest/?badge=latest
[coverage-image]: https://codecov.io/gh/rusty1s/pytorch_scatter/branch/master/graph/badge.svg
[coverage-url]: https://codecov.io/github/rusty1s/pytorch_scatter?branch=master

# PyTorch Scatter

[![PyPI Version][pypi-image]][pypi-url]
[![Testing Status][testing-image]][testing-url]
[![Linting Status][linting-image]][linting-url]
[![Docs Status][docs-image]][docs-url]
[![Code Coverage][coverage-image]][coverage-url]

<p align="center">
  <img width="50%" src="https://raw.githubusercontent.com/rusty1s/pytorch_scatter/master/docs/source/_figures/add.svg?sanitize=true" />
</p>

--------------------------------------------------------------------------------

**[Documentation](https://pytorch-scatter.readthedocs.io)**

This package consists of a small extension library of highly optimized sparse update (scatter and segment) operations for the use in [PyTorch](http://pytorch.org/), which are missing in the main package.
Scatter and segment operations can be roughly described as reduce operations based on a given "group-index" tensor.
Segment operations require the "group-index" tensor to be sorted, whereas scatter operations are not subject to these requirements.

The package consists of the following operations with reduction types `"sum"|"mean"|"min"|"max"`:

* [**scatter**](https://pytorch-scatter.readthedocs.io/en/latest/functions/scatter.html) based on arbitrary indices
* [**segment_coo**](https://pytorch-scatter.readthedocs.io/en/latest/functions/segment_coo.html) based on sorted indices
* [**segment_csr**](https://pytorch-scatter.readthedocs.io/en/latest/functions/segment_csr.html) based on compressed indices via pointers

In addition, we provide the following **composite functions** which make use of `scatter_*` operations under the hood: `scatter_std`, `scatter_logsumexp`, `scatter_softmax` and `scatter_log_softmax`.

All included operations are broadcastable, work on varying data types, are implemented both for CPU and GPU with corresponding backward implementations, and are fully traceable.

## Installation

### Anaconda

**Update:** You can now install `pytorch-scatter` via [Anaconda](https://anaconda.org/pyg/pytorch-scatter) for all major OS/PyTorch/CUDA combinations 🤗
Given that you have [`pytorch >= 1.8.0` installed](https://pytorch.org/get-started/locally/), simply run

```
conda install pytorch-scatter -c pyg
```

### Binaries

We alternatively provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl).

#### PyTorch 1.10.0

To install the binaries for PyTorch 1.10.0, simply run

```
pip install torch-scatter -f https://data.pyg.org/whl/torch-1.10.0+${CUDA}.html
```

where `${CUDA}` should be replaced by either `cpu`, `cu102`, or `cu113` depending on your PyTorch installation.

|             | `cpu` | `cu102` | `cu113` |
|-------------|-------|---------|---------|
| **Linux**   | ✅    | ✅      | ✅      |
| **Windows** | ✅    | ✅      | ✅      |
| **macOS**   | ✅    |         |         |

#### PyTorch 1.9.0/1.9.1

To install the binaries for PyTorch 1.9.0 and 1.9.1, simply run

```
pip install torch-scatter -f https://data.pyg.org/whl/torch-1.9.0+${CUDA}.html
```

where `${CUDA}` should be replaced by either `cpu`, `cu102`, or `cu111` depending on your PyTorch installation.

|             | `cpu` | `cu102` | `cu111` |
|-------------|-------|---------|---------|
| **Linux**   | ✅    | ✅      | ✅      |
| **Windows** | ✅    | ✅      | ✅      |
| **macOS**   | ✅    |         |         |

**Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1 and PyTorch 1.8.0/1.8.1 (following the same procedure).

### From source

Ensure that at least PyTorch 1.4.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*:

```
$ python -c "import torch; print(torch.__version__)"
>>> 1.4.0

$ echo $PATH
>>> /usr/local/cuda/bin:...

$ echo $CPATH
>>> /usr/local/cuda/include:...
```

Then run:

```
pip install torch-scatter
```

When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail.
In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*:

```
export TORCH_CUDA_ARCH_LIST = "6.0 6.1 7.2+PTX 7.5+PTX"
```

## Example

```py
import torch
from torch_scatter import scatter_max

src = torch.tensor([[2, 0, 1, 4, 3], [0, 2, 1, 3, 4]])
index = torch.tensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])

out, argmax = scatter_max(src, index, dim=-1)
```

```
print(out)
tensor([[0, 0, 4, 3, 2, 0],
        [2, 4, 3, 0, 0, 0]])

print(argmax)
tensor([[5, 5, 3, 4, 0, 1]
        [1, 4, 3, 5, 5, 5]])
```

## Running tests

```
python setup.py test
```

## C++ API

`torch-scatter` also offers a C++ API that contains C++ equivalent of python models.

```
mkdir build
cd build
# Add -DWITH_CUDA=on support for the CUDA if needed
cmake ..
make
make install
```