scatter.cpp 10.2 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
#include <Python.h>
rusty1s's avatar
rusty1s committed
2
3
#include <torch/script.h>

rusty1s's avatar
update  
rusty1s committed
4
5
#include "cpu/scatter_cpu.h"
#include "utils.h"
rusty1s's avatar
rusty1s committed
6

rusty1s's avatar
update  
rusty1s committed
7
8
9
#ifdef WITH_CUDA
#include "cuda/scatter_cuda.h"
#endif
rusty1s's avatar
rusty1s committed
10

rusty1s's avatar
rusty1s committed
11
#ifdef _WIN32
rusty1s's avatar
update  
rusty1s committed
12
PyMODINIT_FUNC PyInit__scatter(void) { return NULL; }
rusty1s's avatar
rusty1s committed
13
14
#endif

rusty1s's avatar
update  
rusty1s committed
15
16
17
18
19
20
21
22
23
24
torch::Tensor broadcast(torch::Tensor src, torch::Tensor other, int64_t dim) {
  if (src.dim() == 1)
    for (auto i = 0; i < dim; i++)
      src = src.unsqueeze(0);
  for (auto i = src.dim(); i < other.dim(); i++)
    src = src.unsqueeze(-1);
  src = src.expand(other.sizes().vec());
  return src;
}

rusty1s's avatar
rusty1s committed
25
26
27
28
std::tuple<torch::Tensor, torch::optional<torch::Tensor>>
scatter_fw(torch::Tensor src, torch::Tensor index, int64_t dim,
           torch::optional<torch::Tensor> optional_out,
           torch::optional<int64_t> dim_size, std::string reduce) {
rusty1s's avatar
update  
rusty1s committed
29
30
31
32
33
34
35
36
37
38
  if (src.device().is_cuda()) {
#ifdef WITH_CUDA
    return scatter_cuda(src, index, dim, optional_out, dim_size, reduce);
#else
    AT_ERROR("Not compiled with CUDA support");
#endif
  } else {
    return scatter_cpu(src, index, dim, optional_out, dim_size, reduce);
  }
}
rusty1s's avatar
typos  
rusty1s committed
39

rusty1s's avatar
update  
rusty1s committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
using torch::autograd::AutogradContext;
using torch::autograd::Variable;
using torch::autograd::variable_list;

class ScatterSum : public torch::autograd::Function<ScatterSum> {
public:
  static variable_list forward(AutogradContext *ctx, Variable src,
                               Variable index, int64_t dim,
                               torch::optional<Variable> optional_out,
                               torch::optional<int64_t> dim_size) {
    dim = dim < 0 ? src.dim() + dim : dim;
    ctx->saved_data["dim"] = dim;
    ctx->saved_data["src_shape"] = src.sizes();
    index = broadcast(index, src, dim);
    auto result = scatter_fw(src, index, dim, optional_out, dim_size, "sum");
    auto out = std::get<0>(result);
    ctx->save_for_backward({index});
    if (optional_out.has_value())
      ctx->mark_dirty({optional_out.value()});
    return {out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto index = saved[0];
    auto dim = ctx->saved_data["dim"].toInt();
    auto src_shape = list2vec(ctx->saved_data["src_shape"].toIntList());
    auto grad_in = torch::gather(grad_out, dim, index, false);
    return {grad_in, Variable(), Variable(), Variable(), Variable()};
  }
};

rusty1s's avatar
rusty1s committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
class ScatterMul : public torch::autograd::Function<ScatterMul> {
public:
  static variable_list forward(AutogradContext *ctx, Variable src,
                               Variable index, int64_t dim,
                               torch::optional<Variable> optional_out,
                               torch::optional<int64_t> dim_size) {
    dim = dim < 0 ? src.dim() + dim : dim;
    ctx->saved_data["dim"] = dim;
    ctx->saved_data["src_shape"] = src.sizes();
    index = broadcast(index, src, dim);
    auto result = scatter_fw(src, index, dim, optional_out, dim_size, "mul");
    auto out = std::get<0>(result);
    ctx->save_for_backward({src, index, out});
    if (optional_out.has_value())
      ctx->mark_dirty({optional_out.value()});
    return {out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto src = saved[0];
    auto index = saved[1];
    auto out = saved[2];
    auto dim = ctx->saved_data["dim"].toInt();
    auto src_shape = list2vec(ctx->saved_data["src_shape"].toIntList());
    auto grad_in = torch::gather(grad_out * out, dim, index, false).div_(src);
    return {grad_in, Variable(), Variable(), Variable(), Variable()};
  }
};

rusty1s's avatar
update  
rusty1s committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
class ScatterMean : public torch::autograd::Function<ScatterMean> {
public:
  static variable_list forward(AutogradContext *ctx, Variable src,
                               Variable index, int64_t dim,
                               torch::optional<Variable> optional_out,
                               torch::optional<int64_t> dim_size) {
    dim = dim < 0 ? src.dim() + dim : dim;
    ctx->saved_data["dim"] = dim;
    ctx->saved_data["src_shape"] = src.sizes();

    auto old_index = index;

    index = broadcast(index, src, dim);
    auto result = scatter_fw(src, index, dim, optional_out, dim_size, "sum");
    auto out = std::get<0>(result);

    auto ones = torch::ones(old_index.sizes(), src.options());
    result = scatter_fw(ones, old_index,
                        old_index.dim() <= dim ? old_index.dim() - 1 : dim,
                        torch::nullopt, out.size(dim), "sum");
    auto count = std::get<0>(result);
    count.clamp_(1);
    count = broadcast(count, out, dim);
rusty1s's avatar
rusty1s committed
127
128

    if (out.is_floating_point())
rusty1s's avatar
rusty1s committed
129
      out.true_divide_(count);
rusty1s's avatar
rusty1s committed
130
    else
rusty1s's avatar
rusty1s committed
131
      out.floor_divide_(count);
rusty1s's avatar
update  
rusty1s committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

    ctx->save_for_backward({index, count});
    if (optional_out.has_value())
      ctx->mark_dirty({optional_out.value()});
    return {out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto index = saved[0];
    auto count = saved[1];
    auto dim = ctx->saved_data["dim"].toInt();
    auto src_shape = list2vec(ctx->saved_data["src_shape"].toIntList());
    count = torch::gather(count, dim, index, false);
    auto grad_in = torch::gather(grad_out, dim, index, false);
rusty1s's avatar
rusty1s committed
148
    grad_in.true_divide_(count);
rusty1s's avatar
update  
rusty1s committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
    return {grad_in, Variable(), Variable(), Variable(), Variable()};
  }
};

class ScatterMin : public torch::autograd::Function<ScatterMin> {
public:
  static variable_list forward(AutogradContext *ctx, Variable src,
                               Variable index, int64_t dim,
                               torch::optional<Variable> optional_out,
                               torch::optional<int64_t> dim_size) {
    dim = dim < 0 ? src.dim() + dim : dim;
    ctx->saved_data["dim"] = dim;
    ctx->saved_data["src_shape"] = src.sizes();

    index = broadcast(index, src, dim);
    auto result = scatter_fw(src, index, dim, optional_out, dim_size, "min");
    auto out = std::get<0>(result);
    auto arg_out = std::get<1>(result).value();
    ctx->save_for_backward({index, arg_out});
    ctx->mark_non_differentiable({arg_out});
    if (optional_out.has_value())
      ctx->mark_dirty({optional_out.value()});
    return {out, arg_out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto index = saved[0];
    auto arg_out = saved[1];
    auto dim = ctx->saved_data["dim"].toInt();
    auto src_shape = list2vec(ctx->saved_data["src_shape"].toIntList());
    src_shape[dim] += 1;
    auto grad_in = torch::zeros(src_shape, grad_out.options());
    grad_in.scatter_(dim, arg_out, grad_out);
    grad_in = grad_in.narrow(dim, 0, src_shape[dim] - 1);
    return {grad_in, Variable(), Variable(), Variable(), Variable()};
  }
};

class ScatterMax : public torch::autograd::Function<ScatterMax> {
public:
  static variable_list forward(AutogradContext *ctx, Variable src,
                               Variable index, int64_t dim,
                               torch::optional<Variable> optional_out,
                               torch::optional<int64_t> dim_size) {
    dim = dim < 0 ? src.dim() + dim : dim;
    ctx->saved_data["dim"] = dim;
    ctx->saved_data["src_shape"] = src.sizes();

    index = broadcast(index, src, dim);
    auto result = scatter_fw(src, index, dim, optional_out, dim_size, "max");
    auto out = std::get<0>(result);
    auto arg_out = std::get<1>(result).value();
    ctx->save_for_backward({index, arg_out});
    ctx->mark_non_differentiable({arg_out});
    if (optional_out.has_value())
      ctx->mark_dirty({optional_out.value()});
    return {out, arg_out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto index = saved[0];
    auto arg_out = saved[1];
    auto dim = ctx->saved_data["dim"].toInt();
    auto src_shape = list2vec(ctx->saved_data["src_shape"].toIntList());
    src_shape[dim] += 1;
    auto grad_in = torch::zeros(src_shape, grad_out.options());
    grad_in.scatter_(dim, arg_out, grad_out);
    grad_in = grad_in.narrow(dim, 0, src_shape[dim] - 1);
    return {grad_in, Variable(), Variable(), Variable(), Variable()};
  }
};

torch::Tensor scatter_sum(torch::Tensor src, torch::Tensor index, int64_t dim,
                          torch::optional<torch::Tensor> optional_out,
                          torch::optional<int64_t> dim_size) {
  return ScatterSum::apply(src, index, dim, optional_out, dim_size)[0];
}

rusty1s's avatar
rusty1s committed
231
232
233
234
235
236
torch::Tensor scatter_mul(torch::Tensor src, torch::Tensor index, int64_t dim,
                          torch::optional<torch::Tensor> optional_out,
                          torch::optional<int64_t> dim_size) {
  return ScatterMul::apply(src, index, dim, optional_out, dim_size)[0];
}

rusty1s's avatar
update  
rusty1s committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
torch::Tensor scatter_mean(torch::Tensor src, torch::Tensor index, int64_t dim,
                           torch::optional<torch::Tensor> optional_out,
                           torch::optional<int64_t> dim_size) {
  return ScatterMean::apply(src, index, dim, optional_out, dim_size)[0];
}

std::tuple<torch::Tensor, torch::Tensor>
scatter_min(torch::Tensor src, torch::Tensor index, int64_t dim,
            torch::optional<torch::Tensor> optional_out,
            torch::optional<int64_t> dim_size) {
  auto result = ScatterMin::apply(src, index, dim, optional_out, dim_size);
  return std::make_tuple(result[0], result[1]);
}

std::tuple<torch::Tensor, torch::Tensor>
scatter_max(torch::Tensor src, torch::Tensor index, int64_t dim,
            torch::optional<torch::Tensor> optional_out,
            torch::optional<int64_t> dim_size) {
  auto result = ScatterMax::apply(src, index, dim, optional_out, dim_size);
  return std::make_tuple(result[0], result[1]);
rusty1s's avatar
rusty1s committed
257
258
}

rusty1s's avatar
update  
rusty1s committed
259
260
static auto registry = torch::RegisterOperators()
                           .op("torch_scatter::scatter_sum", &scatter_sum)
rusty1s's avatar
rusty1s committed
261
                           .op("torch_scatter::scatter_mul", &scatter_mul)
rusty1s's avatar
update  
rusty1s committed
262
263
264
                           .op("torch_scatter::scatter_mean", &scatter_mean)
                           .op("torch_scatter::scatter_min", &scatter_min)
                           .op("torch_scatter::scatter_max", &scatter_max);