test_segment.py 6.35 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
from itertools import product

import pytest
import torch
rusty1s's avatar
rusty1s committed
5
from torch.autograd import gradcheck
rusty1s's avatar
rusty1s committed
6
from torch_scatter import segment_coo, segment_csr
rusty1s's avatar
rusty1s committed
7

rusty1s's avatar
rusty1s committed
8
from .utils import tensor, dtypes
rusty1s's avatar
rusty1s committed
9

rusty1s's avatar
rusty1s committed
10
reductions = ['add', 'mean', 'min', 'max']
rusty1s's avatar
rusty1s committed
11
grad_reductions = ['add', 'mean']
rusty1s's avatar
rusty1s committed
12

rusty1s's avatar
rusty1s committed
13
devices = [torch.device('cpu')]
rusty1s's avatar
rusty1s committed
14

rusty1s's avatar
rusty1s committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
tests = [
    {
        'src': [1, 2, 3, 4, 5, 6],
        'index': [0, 0, 1, 1, 1, 3],
        'indptr': [0, 2, 5, 5, 6],
        'add': [3, 12, 0, 6],
        'mean': [1.5, 4, 0, 6],
        'min': [1, 3, 0, 6],
        'arg_min': [0, 2, 6, 5],
        'max': [2, 5, 0, 6],
        'arg_max': [1, 4, 6, 5],
    },
    {
        'src': [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]],
        'index': [0, 0, 1, 1, 1, 3],
        'indptr': [0, 2, 5, 5, 6],
        'add': [[4, 6], [21, 24], [0, 0], [11, 12]],
        'mean': [[2, 3], [7, 8], [0, 0], [11, 12]],
        'min': [[1, 2], [5, 6], [0, 0], [11, 12]],
        'arg_min': [[0, 0], [2, 2], [6, 6], [5, 5]],
        'max': [[3, 4], [9, 10], [0, 0], [11, 12]],
        'arg_max': [[1, 1], [4, 4], [6, 6], [5, 5]],
    },
    {
        'src': [[1, 3, 5, 7, 9, 11], [2, 4, 6, 8, 10, 12]],
        'index': [[0, 0, 1, 1, 1, 3], [0, 0, 0, 1, 1, 2]],
        'indptr': [[0, 2, 5, 5, 6], [0, 3, 5, 6, 6]],
        'add': [[4, 21, 0, 11], [12, 18, 12, 0]],
        'mean': [[2, 7, 0, 11], [4, 9, 12, 0]],
        'min': [[1, 5, 0, 11], [2, 8, 12, 0]],
        'arg_min': [[0, 2, 6, 5], [0, 3, 5, 6]],
        'max': [[3, 9, 0, 11], [6, 10, 12, 0]],
        'arg_max': [[1, 4, 6, 5], [2, 4, 5, 6]],
    },
    {
rusty1s's avatar
rusty1s committed
50
51
52
53
54
55
56
57
58
        'src': [[[1, 2], [3, 4], [5, 6]], [[7, 9], [10, 11], [12, 13]]],
        'index': [[0, 0, 1], [0, 2, 2]],
        'indptr': [[0, 2, 3, 3], [0, 1, 1, 3]],
        'add': [[[4, 6], [5, 6], [0, 0]], [[7, 9], [0, 0], [22, 24]]],
        'mean': [[[2, 3], [5, 6], [0, 0]], [[7, 9], [0, 0], [11, 12]]],
        'min': [[[1, 2], [5, 6], [0, 0]], [[7, 9], [0, 0], [10, 11]]],
        'arg_min': [[[0, 0], [2, 2], [3, 3]], [[0, 0], [3, 3], [1, 1]]],
        'max': [[[3, 4], [5, 6], [0, 0]], [[7, 9], [0, 0], [12, 13]]],
        'arg_max': [[[1, 1], [2, 2], [3, 3]], [[0, 0], [3, 3], [2, 2]]],
rusty1s's avatar
rusty1s committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
    },
    {
        'src': [[1, 3], [2, 4]],
        'index': [[0, 0], [0, 0]],
        'indptr': [[0, 2], [0, 2]],
        'add': [[4], [6]],
        'mean': [[2], [3]],
        'min': [[1], [2]],
        'arg_min': [[0], [0]],
        'max': [[3], [4]],
        'arg_max': [[1], [1]],
    },
    {
        'src': [[[1, 1], [3, 3]], [[2, 2], [4, 4]]],
        'index': [[0, 0], [0, 0]],
        'indptr': [[0, 2], [0, 2]],
        'add': [[[4, 4]], [[6, 6]]],
        'mean': [[[2, 2]], [[3, 3]]],
        'min': [[[1, 1]], [[2, 2]]],
        'arg_min': [[[0, 0]], [[0, 0]]],
        'max': [[[3, 3]], [[4, 4]]],
        'arg_max': [[[1, 1]], [[1, 1]]],
    },
]


@pytest.mark.parametrize('test,reduce,dtype,device',
                         product(tests, reductions, dtypes, devices))
rusty1s's avatar
rusty1s committed
87
def test_forward(test, reduce, dtype, device):
rusty1s's avatar
rusty1s committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    src = tensor(test['src'], dtype, device)
    index = tensor(test['index'], torch.long, device)
    indptr = tensor(test['indptr'], torch.long, device)
    expected = tensor(test[reduce], dtype, device)

    out = segment_coo(src, index, reduce=reduce)
    if isinstance(out, tuple):
        out, arg_out = out
        arg_expected = tensor(test[f'arg_{reduce}'], torch.long, device)
        assert torch.all(arg_out == arg_expected)
    assert torch.all(out == expected)

    out = segment_csr(src, indptr, reduce=reduce)
    if isinstance(out, tuple):
        out, arg_out = out
        arg_expected = tensor(test[f'arg_{reduce}'], torch.long, device)
        assert torch.all(arg_out == arg_expected)
    assert torch.all(out == expected)

rusty1s's avatar
rusty1s committed
107

rusty1s's avatar
rusty1s committed
108
109
110
111
112
113
114
115
116
117
118
119
120
@pytest.mark.skipif(not torch.cuda.is_available(), reason='CUDA not available')
@pytest.mark.parametrize('test,reduce,device',
                         product(tests, grad_reductions, devices))
def test_backward(test, reduce, device):
    src = tensor(test['src'], torch.double, device)
    src.requires_grad_()
    index = tensor(test['index'], torch.long, device)
    indptr = tensor(test['indptr'], torch.long, device)

    assert gradcheck(segment_coo, (src, index, None, None, reduce)) is True
    assert gradcheck(segment_csr, (src, indptr, None, reduce)) is True


rusty1s's avatar
rusty1s committed
121
122
123
124
125
126
127
128
129
130
131
132
@pytest.mark.parametrize('test,reduce,dtype,device',
                         product(tests, reductions, dtypes, devices))
def test_segment_out(test, reduce, dtype, device):
    src = tensor(test['src'], dtype, device)
    index = tensor(test['index'], torch.long, device)
    indptr = tensor(test['indptr'], torch.long, device)
    expected = tensor(test[reduce], dtype, device)

    size = list(src.size())
    size[indptr.dim() - 1] = indptr.size(-1) - 1
    out = src.new_full(size, -2)

rusty1s's avatar
rusty1s committed
133
    segment_csr(src, indptr, out, reduce=reduce)
rusty1s's avatar
rusty1s committed
134
135
136
137
    assert torch.all(out == expected)

    out.fill_(-2)

rusty1s's avatar
rusty1s committed
138
    segment_coo(src, index, out, reduce=reduce)
rusty1s's avatar
rusty1s committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

    if reduce == 'add':
        expected = expected - 2
    elif reduce == 'mean':
        expected = out  # We can not really test this here.
    elif reduce == 'min':
        expected = expected.fill_(-2)
    elif reduce == 'max':
        expected[expected == 0] = -2
    else:
        raise ValueError

    assert torch.all(out == expected)


@pytest.mark.parametrize('test,reduce,dtype,device',
                         product(tests, reductions, dtypes, devices))
def test_non_contiguous_segment(test, reduce, dtype, device):
    src = tensor(test['src'], dtype, device)
    index = tensor(test['index'], torch.long, device)
    indptr = tensor(test['indptr'], torch.long, device)
    expected = tensor(test[reduce], dtype, device)

    if src.dim() > 1:
        src = src.transpose(0, 1).contiguous().transpose(0, 1)
    if index.dim() > 1:
        index = index.transpose(0, 1).contiguous().transpose(0, 1)
    if indptr.dim() > 1:
        indptr = indptr.transpose(0, 1).contiguous().transpose(0, 1)

    out = segment_coo(src, index, reduce=reduce)
    if isinstance(out, tuple):
        out, arg_out = out
        arg_expected = tensor(test[f'arg_{reduce}'], torch.long, device)
        assert torch.all(arg_out == arg_expected)
    assert torch.all(out == expected)

    out = segment_csr(src, indptr, reduce=reduce)
    if isinstance(out, tuple):
        out, arg_out = out
        arg_expected = tensor(test[f'arg_{reduce}'], torch.long, device)
        assert torch.all(arg_out == arg_expected)
    assert torch.all(out == expected)