test_segment.py 6.25 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
from itertools import product

import pytest
import torch
rusty1s's avatar
rusty1s committed
5
from torch.autograd import gradcheck
rusty1s's avatar
rusty1s committed
6
from torch_scatter import segment_coo, segment_csr
rusty1s's avatar
rusty1s committed
7

rusty1s's avatar
rusty1s committed
8
from .utils import tensor, dtypes, devices
rusty1s's avatar
rusty1s committed
9

rusty1s's avatar
rusty1s committed
10
11
reductions = ['sum', 'mean', 'min', 'max']
grad_reductions = ['sum', 'mean']
rusty1s's avatar
rusty1s committed
12
13
14
15
16
17

tests = [
    {
        'src': [1, 2, 3, 4, 5, 6],
        'index': [0, 0, 1, 1, 1, 3],
        'indptr': [0, 2, 5, 5, 6],
rusty1s's avatar
rusty1s committed
18
        'sum': [3, 12, 0, 6],
rusty1s's avatar
rusty1s committed
19
20
21
22
23
24
25
26
27
28
        'mean': [1.5, 4, 0, 6],
        'min': [1, 3, 0, 6],
        'arg_min': [0, 2, 6, 5],
        'max': [2, 5, 0, 6],
        'arg_max': [1, 4, 6, 5],
    },
    {
        'src': [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]],
        'index': [0, 0, 1, 1, 1, 3],
        'indptr': [0, 2, 5, 5, 6],
rusty1s's avatar
rusty1s committed
29
        'sum': [[4, 6], [21, 24], [0, 0], [11, 12]],
rusty1s's avatar
rusty1s committed
30
31
32
33
34
35
36
37
38
39
        'mean': [[2, 3], [7, 8], [0, 0], [11, 12]],
        'min': [[1, 2], [5, 6], [0, 0], [11, 12]],
        'arg_min': [[0, 0], [2, 2], [6, 6], [5, 5]],
        'max': [[3, 4], [9, 10], [0, 0], [11, 12]],
        'arg_max': [[1, 1], [4, 4], [6, 6], [5, 5]],
    },
    {
        'src': [[1, 3, 5, 7, 9, 11], [2, 4, 6, 8, 10, 12]],
        'index': [[0, 0, 1, 1, 1, 3], [0, 0, 0, 1, 1, 2]],
        'indptr': [[0, 2, 5, 5, 6], [0, 3, 5, 6, 6]],
rusty1s's avatar
rusty1s committed
40
        'sum': [[4, 21, 0, 11], [12, 18, 12, 0]],
rusty1s's avatar
rusty1s committed
41
42
43
44
45
46
47
        'mean': [[2, 7, 0, 11], [4, 9, 12, 0]],
        'min': [[1, 5, 0, 11], [2, 8, 12, 0]],
        'arg_min': [[0, 2, 6, 5], [0, 3, 5, 6]],
        'max': [[3, 9, 0, 11], [6, 10, 12, 0]],
        'arg_max': [[1, 4, 6, 5], [2, 4, 5, 6]],
    },
    {
rusty1s's avatar
rusty1s committed
48
49
50
        'src': [[[1, 2], [3, 4], [5, 6]], [[7, 9], [10, 11], [12, 13]]],
        'index': [[0, 0, 1], [0, 2, 2]],
        'indptr': [[0, 2, 3, 3], [0, 1, 1, 3]],
rusty1s's avatar
rusty1s committed
51
        'sum': [[[4, 6], [5, 6], [0, 0]], [[7, 9], [0, 0], [22, 24]]],
rusty1s's avatar
rusty1s committed
52
53
54
55
56
        'mean': [[[2, 3], [5, 6], [0, 0]], [[7, 9], [0, 0], [11, 12]]],
        'min': [[[1, 2], [5, 6], [0, 0]], [[7, 9], [0, 0], [10, 11]]],
        'arg_min': [[[0, 0], [2, 2], [3, 3]], [[0, 0], [3, 3], [1, 1]]],
        'max': [[[3, 4], [5, 6], [0, 0]], [[7, 9], [0, 0], [12, 13]]],
        'arg_max': [[[1, 1], [2, 2], [3, 3]], [[0, 0], [3, 3], [2, 2]]],
rusty1s's avatar
rusty1s committed
57
58
59
60
61
    },
    {
        'src': [[1, 3], [2, 4]],
        'index': [[0, 0], [0, 0]],
        'indptr': [[0, 2], [0, 2]],
rusty1s's avatar
rusty1s committed
62
        'sum': [[4], [6]],
rusty1s's avatar
rusty1s committed
63
64
65
66
67
68
69
70
71
72
        'mean': [[2], [3]],
        'min': [[1], [2]],
        'arg_min': [[0], [0]],
        'max': [[3], [4]],
        'arg_max': [[1], [1]],
    },
    {
        'src': [[[1, 1], [3, 3]], [[2, 2], [4, 4]]],
        'index': [[0, 0], [0, 0]],
        'indptr': [[0, 2], [0, 2]],
rusty1s's avatar
rusty1s committed
73
        'sum': [[[4, 4]], [[6, 6]]],
rusty1s's avatar
rusty1s committed
74
75
76
77
78
79
80
81
82
83
84
        'mean': [[[2, 2]], [[3, 3]]],
        'min': [[[1, 1]], [[2, 2]]],
        'arg_min': [[[0, 0]], [[0, 0]]],
        'max': [[[3, 3]], [[4, 4]]],
        'arg_max': [[[1, 1]], [[1, 1]]],
    },
]


@pytest.mark.parametrize('test,reduce,dtype,device',
                         product(tests, reductions, dtypes, devices))
rusty1s's avatar
rusty1s committed
85
def test_forward(test, reduce, dtype, device):
rusty1s's avatar
rusty1s committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    src = tensor(test['src'], dtype, device)
    index = tensor(test['index'], torch.long, device)
    indptr = tensor(test['indptr'], torch.long, device)
    expected = tensor(test[reduce], dtype, device)

    out = segment_coo(src, index, reduce=reduce)
    if isinstance(out, tuple):
        out, arg_out = out
        arg_expected = tensor(test[f'arg_{reduce}'], torch.long, device)
        assert torch.all(arg_out == arg_expected)
    assert torch.all(out == expected)

    out = segment_csr(src, indptr, reduce=reduce)
    if isinstance(out, tuple):
        out, arg_out = out
        arg_expected = tensor(test[f'arg_{reduce}'], torch.long, device)
        assert torch.all(arg_out == arg_expected)
    assert torch.all(out == expected)

rusty1s's avatar
rusty1s committed
105

rusty1s's avatar
rusty1s committed
106
107
108
109
110
111
112
113
114
115
116
117
@pytest.mark.parametrize('test,reduce,device',
                         product(tests, grad_reductions, devices))
def test_backward(test, reduce, device):
    src = tensor(test['src'], torch.double, device)
    src.requires_grad_()
    index = tensor(test['index'], torch.long, device)
    indptr = tensor(test['indptr'], torch.long, device)

    assert gradcheck(segment_coo, (src, index, None, None, reduce)) is True
    assert gradcheck(segment_csr, (src, indptr, None, reduce)) is True


rusty1s's avatar
rusty1s committed
118
119
120
121
122
123
124
125
126
127
128
129
@pytest.mark.parametrize('test,reduce,dtype,device',
                         product(tests, reductions, dtypes, devices))
def test_segment_out(test, reduce, dtype, device):
    src = tensor(test['src'], dtype, device)
    index = tensor(test['index'], torch.long, device)
    indptr = tensor(test['indptr'], torch.long, device)
    expected = tensor(test[reduce], dtype, device)

    size = list(src.size())
    size[indptr.dim() - 1] = indptr.size(-1) - 1
    out = src.new_full(size, -2)

rusty1s's avatar
rusty1s committed
130
    segment_csr(src, indptr, out, reduce=reduce)
rusty1s's avatar
rusty1s committed
131
132
133
134
    assert torch.all(out == expected)

    out.fill_(-2)

rusty1s's avatar
rusty1s committed
135
    segment_coo(src, index, out, reduce=reduce)
rusty1s's avatar
rusty1s committed
136

rusty1s's avatar
rusty1s committed
137
    if reduce == 'sum':
rusty1s's avatar
rusty1s committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
        expected = expected - 2
    elif reduce == 'mean':
        expected = out  # We can not really test this here.
    elif reduce == 'min':
        expected = expected.fill_(-2)
    elif reduce == 'max':
        expected[expected == 0] = -2
    else:
        raise ValueError

    assert torch.all(out == expected)


@pytest.mark.parametrize('test,reduce,dtype,device',
                         product(tests, reductions, dtypes, devices))
def test_non_contiguous_segment(test, reduce, dtype, device):
    src = tensor(test['src'], dtype, device)
    index = tensor(test['index'], torch.long, device)
    indptr = tensor(test['indptr'], torch.long, device)
    expected = tensor(test[reduce], dtype, device)

    if src.dim() > 1:
        src = src.transpose(0, 1).contiguous().transpose(0, 1)
    if index.dim() > 1:
        index = index.transpose(0, 1).contiguous().transpose(0, 1)
    if indptr.dim() > 1:
        indptr = indptr.transpose(0, 1).contiguous().transpose(0, 1)

    out = segment_coo(src, index, reduce=reduce)
    if isinstance(out, tuple):
        out, arg_out = out
        arg_expected = tensor(test[f'arg_{reduce}'], torch.long, device)
        assert torch.all(arg_out == arg_expected)
    assert torch.all(out == expected)

    out = segment_csr(src, indptr, reduce=reduce)
    if isinstance(out, tuple):
        out, arg_out = out
        arg_expected = tensor(test[f'arg_{reduce}'], torch.long, device)
        assert torch.all(arg_out == arg_expected)
    assert torch.all(out == expected)