mul.py 2.75 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
from torch.autograd import Function

rusty1s's avatar
rusty1s committed
3
4
from torch_scatter.utils.ext import get_func
from torch_scatter.utils.gen import gen
rusty1s's avatar
rusty1s committed
5
6
7
8
9
10


class ScatterMul(Function):
    @staticmethod
    def forward(ctx, out, src, index, dim):
        func = get_func('scatter_mul', src)
rusty1s's avatar
rusty1s committed
11
        func(src, index, out, dim)
rusty1s's avatar
rusty1s committed
12
13
14

        ctx.mark_dirty(out)
        ctx.save_for_backward(out, src, index)
rusty1s's avatar
rusty1s committed
15
        ctx.dim = dim
rusty1s's avatar
rusty1s committed
16
17
18
19
20
21
22
23
24

        return out

    @staticmethod
    def backward(ctx, grad_out):
        out, src, index = ctx.saved_variables

        grad_src = None
        if ctx.needs_input_grad[1]:
rusty1s's avatar
rusty1s committed
25
            grad_src = (grad_out * out).gather(ctx.dim, index) / src
rusty1s's avatar
rusty1s committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

        return None, grad_src, None, None


def scatter_mul(src, index, dim=-1, out=None, dim_size=None, fill_value=1):
    r"""
    |

    .. image:: https://raw.githubusercontent.com/rusty1s/pytorch_scatter/
            master/docs/source/_figures/mul.svg?sanitize=true
        :align: center
        :width: 400px

    |

    Multiplies all values from the :attr:`src` tensor into :attr:`out` at the
    indices specified in the :attr:`index` tensor along an given axis
    :attr:`dim`.If multiple indices reference the same location, their
    **contributions multiply** (`cf.` :meth:`~torch_scatter.scatter_add`).

    For one-dimensional tensors, the operation computes

    .. math::
        \mathrm{out}_i = \mathrm{out}_i \cdot \prod_j \mathrm{src}_j

rusty1s's avatar
rusty1s committed
51
    where :math:`\prod_j` is over :math:`j` such that
rusty1s's avatar
rusty1s committed
52
    :math:`\mathrm{index}_j = i`.
rusty1s's avatar
rusty1s committed
53
54
55
56
57
58
59
60
61
62
63
64

    Args:
        src (Tensor): The source tensor.
        index (LongTensor): The indices of elements to scatter.
        dim (int, optional): The axis along which to index.
            (default: :obj:`-1`)
        out (Tensor, optional): The destination tensor. (default: :obj:`None`)
        dim_size (int, optional): If :attr:`out` is not given, automatically
            create output with size :attr:`dim_size` at dimension :attr:`dim`.
            If :attr:`dim_size` is not given, a minimal sized output tensor is
            returned. (default: :obj:`None`)
        fill_value (int, optional): If :attr:`out` is not given, automatically
rusty1s's avatar
typo  
rusty1s committed
65
            fill output tensor with :attr:`fill_value`. (default: :obj:`1`)
rusty1s's avatar
rusty1s committed
66
67
68
69
70
71
72
73
74

    :rtype: :class:`Tensor`

    .. testsetup::

        import torch

    .. testcode::

rusty1s's avatar
rusty1s committed
75
        from torch_scatter import scatter_mul
rusty1s's avatar
rusty1s committed
76

rusty1s's avatar
rusty1s committed
77
        src = torch.tensor([[2, 0, 3, 4, 3], [2, 3, 4, 2, 4]])
rusty1s's avatar
rusty1s committed
78
        index = torch.tensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
rusty1s's avatar
rusty1s committed
79
        out = src.new_ones((2, 6))
rusty1s's avatar
rusty1s committed
80

rusty1s's avatar
rusty1s committed
81
        out = scatter_mul(src, index, out=out)
rusty1s's avatar
rusty1s committed
82

rusty1s's avatar
rusty1s committed
83
84
85
86
        print(out)

    .. testoutput::

rusty1s's avatar
rusty1s committed
87
88
       tensor([[ 1,  1,  4,  3,  6,  0],
               [ 6,  4,  8,  1,  1,  1]])
rusty1s's avatar
rusty1s committed
89
90
91
    """
    src, out, index, dim = gen(src, index, dim, out, dim_size, fill_value)
    return ScatterMul.apply(out, src, index, dim)