div.py 2.83 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
from torch.autograd import Function

rusty1s's avatar
rusty1s committed
3
4
from torch_scatter.utils.ext import get_func
from torch_scatter.utils.gen import gen
rusty1s's avatar
rusty1s committed
5
6
7
8
9
10


class ScatterDiv(Function):
    @staticmethod
    def forward(ctx, out, src, index, dim):
        func = get_func('scatter_div', src)
rusty1s's avatar
rusty1s committed
11
        func(src, index, out, dim)
rusty1s's avatar
rusty1s committed
12
13
14

        ctx.mark_dirty(out)
        ctx.save_for_backward(out, src, index)
rusty1s's avatar
rusty1s committed
15
        ctx.dim = dim
rusty1s's avatar
rusty1s committed
16
17
18
19
20
21
22
23
24

        return out

    @staticmethod
    def backward(ctx, grad_out):
        out, src, index = ctx.saved_variables

        grad_src = None
        if ctx.needs_input_grad[1]:
rusty1s's avatar
rusty1s committed
25
            grad_src = -(out * grad_out).gather(ctx.dim, index) / src
rusty1s's avatar
rusty1s committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

        return None, grad_src, None, None


def scatter_div(src, index, dim=-1, out=None, dim_size=None, fill_value=1):
    r"""
    |

    .. image:: https://raw.githubusercontent.com/rusty1s/pytorch_scatter/
            master/docs/source/_figures/div.svg?sanitize=true
        :align: center
        :width: 400px

    |

    Divides all values from the :attr:`src` tensor into :attr:`out` at the
    indices specified in the :attr:`index` tensor along an given axis
    :attr:`dim`.If multiple indices reference the same location, their
    **contributions divide** (`cf.` :meth:`~torch_scatter.scatter_add`).

    For one-dimensional tensors, the operation computes

    .. math::
        \mathrm{out}_i = \mathrm{out}_i \cdot \prod_j
        \frac{1}{\mathrm{src}_j}

rusty1s's avatar
rusty1s committed
52
    where :math:`\prod_j` is over :math:`j` such that
rusty1s's avatar
rusty1s committed
53
54
55
56
57
58
59
60
61
62
63
64
65
    :math:`\mathrm{index}_j = i`.

    Args:
        src (Tensor): The source tensor.
        index (LongTensor): The indices of elements to scatter.
        dim (int, optional): The axis along which to index.
            (default: :obj:`-1`)
        out (Tensor, optional): The destination tensor. (default: :obj:`None`)
        dim_size (int, optional): If :attr:`out` is not given, automatically
            create output with size :attr:`dim_size` at dimension :attr:`dim`.
            If :attr:`dim_size` is not given, a minimal sized output tensor is
            returned. (default: :obj:`None`)
        fill_value (int, optional): If :attr:`out` is not given, automatically
rusty1s's avatar
typo  
rusty1s committed
66
            fill output tensor with :attr:`fill_value`. (default: :obj:`1`)
rusty1s's avatar
rusty1s committed
67
68
69
70
71
72
73
74
75
76

    :rtype: :class:`Tensor`

    .. testsetup::

        import torch

    .. testcode::

        from torch_scatter import scatter_div
rusty1s's avatar
rusty1s committed
77
78

        src = torch.tensor([[2, 1, 1, 4, 2], [1, 2, 1, 2, 4]]).float()
rusty1s's avatar
rusty1s committed
79
80
        index = torch.tensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
        out = src.new_ones((2, 6))
rusty1s's avatar
rusty1s committed
81

rusty1s's avatar
rusty1s committed
82
        out = scatter_div(src, index, out=out)
rusty1s's avatar
rusty1s committed
83

rusty1s's avatar
rusty1s committed
84
85
86
87
        print(out)

    .. testoutput::

rusty1s's avatar
rusty1s committed
88
89
       tensor([[ 1.0000,  1.0000,  0.2500,  0.5000,  0.5000,  1.0000],
               [ 0.5000,  0.2500,  0.5000,  1.0000,  1.0000,  1.0000]])
rusty1s's avatar
rusty1s committed
90
91
92
    """
    src, out, index, dim = gen(src, index, dim, out, dim_size, fill_value)
    return ScatterDiv.apply(out, src, index, dim)