test_backward.py 1.65 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
from os import path as osp
from itertools import product

import pytest
import json
import torch
from torch.autograd import Variable as V
import torch_scatter

from .utils import tensors, Tensor

f = open(osp.join(osp.dirname(__file__), 'backward.json'), 'r')
data = json.load(f)
f.close()


@pytest.mark.parametrize('tensor,i', product(tensors, range(len(data))))
def test_backward_cpu(tensor, i):
    name = data[i]['name']
    index = V(torch.LongTensor(data[i]['index']))
    input = V(Tensor(tensor, data[i]['input']), requires_grad=True)
    dim = data[i]['dim']
rusty1s's avatar
rusty1s committed
23
    fill_value = data[i]['fill_value']
rusty1s's avatar
rusty1s committed
24
    grad = Tensor(tensor, data[i]['grad'])
rusty1s's avatar
rusty1s committed
25
    output = V(grad.new(grad.size()).fill_(fill_value))
rusty1s's avatar
rusty1s committed
26
27
28
29
30
31
32
33
34
35
36
37
38
    expected = Tensor(tensor, data[i]['expected'])

    func = getattr(torch_scatter, 'scatter_{}_'.format(name))
    func(output, index, input, dim)
    output.backward(grad)
    assert input.grad.data.tolist() == expected.tolist()


@pytest.mark.skipif(not torch.cuda.is_available(), reason='no CUDA')
@pytest.mark.parametrize('tensor,i', product(tensors, range(len(data))))
def test_backward_gpu(tensor, i):
    name = data[i]['name']
    index = V(torch.LongTensor(data[i]['index'])).cuda()
rusty1s's avatar
rusty1s committed
39
    input = V(Tensor(tensor, data[i]['input']), requires_grad=True).cuda()
rusty1s's avatar
rusty1s committed
40
    dim = data[i]['dim']
rusty1s's avatar
rusty1s committed
41
    fill_value = data[i]['fill_value']
rusty1s's avatar
rusty1s committed
42
    grad = Tensor(tensor, data[i]['grad']).cuda()
rusty1s's avatar
rusty1s committed
43
    output = V(grad.new(grad.size()).fill_(fill_value)).cuda()
rusty1s's avatar
rusty1s committed
44
45
46
47
48
49
    expected = Tensor(tensor, data[i]['expected'])

    func = getattr(torch_scatter, 'scatter_{}_'.format(name))
    func(output, index, input, dim)
    output.backward(grad)
    assert input.grad.data.cpu().tolist() == expected.tolist()