segment_csr_cuda.cu 9.56 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#include "segment_csr_cuda.h"

#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/detail/IndexUtils.cuh>
#include <ATen/cuda/detail/TensorInfo.cuh>

#include "index_info.cuh"
#include "reducer.cuh"
#include "utils.cuh"

#define THREADS 256
#define BLOCKS(TB, N) (TB * N + THREADS - 1) / THREADS
#define FULL_MASK 0xffffffff

template <typename scalar_t, ReductionType REDUCE, int TB>
__global__ void
segment_csr_kernel(const scalar_t *src_data,
                   const at::cuda::detail::TensorInfo<int64_t, int> indptr_info,
                   scalar_t *out_data, int64_t *arg_out_data, size_t N,
                   size_t E) {

  // Each warp processes exactly `32/TB` rows and aggregates all row values
  // via a parallel reduction.

  int thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
  int row_idx = thread_idx / TB;
  int lane_idx = thread_idx & (TB - 1);

  if (row_idx < N) {
    int offset = IndexPtrToOffset<int64_t>::get(row_idx, indptr_info);
    int64_t row_start = __ldg(indptr_info.data + offset);
    int64_t row_end = __ldg(indptr_info.data + offset +
                            indptr_info.strides[indptr_info.dims - 1]);

    scalar_t val = Reducer<scalar_t, REDUCE>::init();
    int64_t arg, arg_tmp;

    offset = (row_idx / (indptr_info.sizes[indptr_info.dims - 1] - 1)) * E;
    for (int64_t src_idx = row_start + lane_idx; src_idx < row_end;
         src_idx += TB) {
      Reducer<scalar_t, REDUCE>::update(&val, src_data[offset + src_idx], &arg,
                                        src_idx);
    }

#pragma unroll
    for (int i = TB / 2; i > 0; i /= 2) {
      // Parallel reduction inside a single warp.
      if (REDUCE == MIN || REDUCE == MAX)
        arg_tmp = __shfl_down_sync(FULL_MASK, arg, i);
      Reducer<scalar_t, REDUCE>::update(
          &val, __shfl_down_sync(FULL_MASK, val, i), &arg, arg_tmp);
    }

    if (lane_idx == 0) {
      Reducer<scalar_t, REDUCE>::write(out_data + row_idx, val,
                                       arg_out_data + row_idx, arg,
                                       row_end - row_start);
    }
  }
}

template <typename scalar_t, ReductionType REDUCE>
__global__ void segment_csr_broadcast_kernel(
    const scalar_t *src_data,
    const at::cuda::detail::TensorInfo<int64_t, int> indptr_info,
    scalar_t *out_data, int64_t *arg_out_data, size_t N, size_t K, size_t E) {

  // Each thread processes exactly one row. It turned out that is more
  // efficient than using shared memory due to avoiding synchronization
  // barriers.

  int thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
  int row_idx = thread_idx / K;
  int lane_idx = thread_idx % K;

  if (thread_idx < N * K) {
    int offset = IndexPtrToOffset<int64_t>::get(row_idx, indptr_info);
    int64_t row_start = __ldg(indptr_info.data + offset);
    int64_t row_end = __ldg(indptr_info.data + offset +
                            indptr_info.strides[indptr_info.dims - 1]);

    scalar_t val = Reducer<scalar_t, REDUCE>::init();
    int64_t arg;

    offset = (row_idx / (indptr_info.sizes[indptr_info.dims - 1] - 1)) * E * K;
    for (int64_t src_idx = row_start; src_idx < row_end; src_idx++) {
      Reducer<scalar_t, REDUCE>::update(
          &val, src_data[offset + K * src_idx + lane_idx], &arg, src_idx);
    }

    Reducer<scalar_t, REDUCE>::write(out_data + thread_idx, val,
                                     arg_out_data + thread_idx, arg,
                                     row_end - row_start);
  }
}

std::tuple<torch::Tensor, torch::optional<torch::Tensor>>
segment_csr_cuda(torch::Tensor src, torch::Tensor indptr,
                 torch::optional<torch::Tensor> optional_out,
                 std::string reduce) {
  CHECK_CUDA(src);
  CHECK_CUDA(indptr);
  if (optional_out.has_value())
    CHECK_CUDA(optional_out.value());
  cudaSetDevice(src.get_device());

  CHECK_INPUT(src.dim() >= indptr.dim());

  auto sizes = indptr.sizes().vec();
  for (auto i = 0; i < indptr.dim() - 1; i++)
    sizes[i] = src.size(i);
  indptr = indptr.expand(sizes);

  auto dim = indptr.dim() - 1;

  src = src.contiguous();

  torch::Tensor out;
  if (optional_out.has_value()) {
    out = optional_out.value().contiguous();
    for (int i = 0; i < out.dim(); i++)
      if (i != dim)
        CHECK_INPUT(src.size(i) == out.size(i));
rusty1s's avatar
rusty1s committed
124
    CHECK_INPUT(src.numel() == 0 || out.size(dim) == indptr.size(dim) - 1);
rusty1s's avatar
rusty1s committed
125
126
  } else {
    sizes = src.sizes().vec();
rusty1s's avatar
rusty1s committed
127
    sizes[dim] = std::max<int64_t>(indptr.size(dim) - 1, 0);
rusty1s's avatar
rusty1s committed
128
129
130
131
132
133
134
135
136
137
    out = torch::empty(sizes, src.options());
  }

  torch::optional<torch::Tensor> arg_out = torch::nullopt;
  int64_t *arg_out_data = nullptr;
  if (reduce2REDUCE.at(reduce) == MIN || reduce2REDUCE.at(reduce) == MAX) {
    arg_out = torch::full(out.sizes(), src.size(dim), indptr.options());
    arg_out_data = arg_out.value().data_ptr<int64_t>();
  }

rusty1s's avatar
rusty1s committed
138
139
140
  if (src.numel() == 0) {
    if (!optional_out.has_value())
      out.fill_(0);
rusty1s's avatar
rusty1s committed
141
    return std::make_tuple(out, arg_out);
rusty1s's avatar
rusty1s committed
142
  }
rusty1s's avatar
rusty1s committed
143

rusty1s's avatar
rusty1s committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
  auto N = out.size(dim) * (indptr.numel() / indptr.size(-1));
  auto K = out.numel() / N;
  auto E = src.size(dim);

  auto indptr_info = at::cuda::detail::getTensorInfo<int64_t, int>(indptr);
  auto stream = at::cuda::getCurrentCUDAStream();
  AT_DISPATCH_ALL_TYPES(src.scalar_type(), "segment_csr_kernel", [&] {
    auto src_data = src.data_ptr<scalar_t>();
    auto out_data = out.data_ptr<scalar_t>();

    AT_DISPATCH_REDUCTION_TYPES(reduce, [&] {
      if (K == 1) {
        segment_csr_kernel<scalar_t, REDUCE, 1>
            <<<BLOCKS(32, N), THREADS, 0, stream>>>(
                src_data, indptr_info, out_data, arg_out_data, N, E);
      } else {
        segment_csr_broadcast_kernel<scalar_t, REDUCE>
            <<<BLOCKS(1, N * K), THREADS, 0, stream>>>(
                src_data, indptr_info, out_data, arg_out_data, N, K, E);
      }
    });
  });

  return std::make_tuple(out, arg_out);
}

template <typename scalar_t, int TB>
__global__ void
gather_csr_kernel(const scalar_t *src_data,
                  const at::cuda::detail::TensorInfo<int64_t, int> indptr_info,
                  scalar_t *out_data, size_t N, size_t E) {

  int thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
  int row_idx = thread_idx / TB;
  int lane_idx = thread_idx % TB;

  if (row_idx < N) {
    int offset = IndexPtrToOffset<int64_t>::get(row_idx, indptr_info);
    int row_start = __ldg(indptr_info.data + offset);
    int row_end = __ldg(indptr_info.data + offset +
                        indptr_info.strides[indptr_info.dims - 1]);
    scalar_t val = __ldg(src_data + row_idx);

    offset = (row_idx / (indptr_info.sizes[indptr_info.dims - 1] - 1)) * E;
    for (int out_idx = row_start + lane_idx; out_idx < row_end; out_idx += TB) {
      out_data[offset + out_idx] = val; // "Mostly" coalesced.
    }
  }
}

template <typename scalar_t>
__global__ void gather_csr_broadcast_kernel(
    const scalar_t *src_data,
    const at::cuda::detail::TensorInfo<int64_t, int> indptr_info,
    scalar_t *out_data, size_t N, size_t K, size_t E) {

  int thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
  int row_idx = thread_idx / K;
  int lane_idx = thread_idx % K;

  if (thread_idx < N * K) {
    int offset = IndexPtrToOffset<int64_t>::get(row_idx, indptr_info);
    int row_start = __ldg(indptr_info.data + offset);
    int row_end = __ldg(indptr_info.data + offset +
                        indptr_info.strides[indptr_info.dims - 1]);

    scalar_t val = src_data[thread_idx]; // Coalesced.

    offset = (row_idx / (indptr_info.sizes[indptr_info.dims - 1] - 1)) * E * K;
    for (int out_idx = row_start; out_idx < row_end; out_idx++) {
      out_data[offset + K * out_idx + lane_idx] = val; // "Mostly" coalesced.
    }
  }
}

torch::Tensor gather_csr_cuda(torch::Tensor src, torch::Tensor indptr,
                              torch::optional<torch::Tensor> optional_out) {
  CHECK_CUDA(src);
  CHECK_CUDA(indptr);
  if (optional_out.has_value())
    CHECK_CUDA(optional_out.value());
  cudaSetDevice(src.get_device());

  CHECK_INPUT(src.dim() >= indptr.dim());

  auto sizes = indptr.sizes().vec();
  for (auto i = 0; i < indptr.dim() - 1; i++)
    sizes[i] = src.size(i);
  indptr = indptr.expand(sizes);

  auto dim = indptr.dim() - 1;
rusty1s's avatar
rusty1s committed
235
  CHECK_INPUT(src.size(dim) == 0 || src.size(dim) == indptr.size(dim) - 1);
rusty1s's avatar
rusty1s committed
236
237
238
239
240
241
242
243
244
245
246

  src = src.contiguous();

  torch::Tensor out;
  if (optional_out.has_value()) {
    out = optional_out.value().contiguous();
    for (auto i = 0; i < out.dim(); i++)
      if (i != dim)
        CHECK_INPUT(src.size(i) == out.size(i));
  } else {
    auto sizes = src.sizes().vec();
rusty1s's avatar
rusty1s committed
247
248
249
250
251
252
253
    if (src.numel() > 0) {
      auto d_size = indptr.flatten()[-1].data_ptr<int64_t>();
      auto h_size = (int64_t *)malloc(sizeof(int64_t));
      cudaMemcpy(h_size, d_size, sizeof(int64_t), cudaMemcpyDeviceToHost);
      sizes[dim] = *h_size;
    } else
      sizes[dim] = 0;
rusty1s's avatar
rusty1s committed
254
255
256
    out = torch::empty(sizes, src.options());
  }

rusty1s's avatar
rusty1s committed
257
258
259
  if (src.numel() == 0) {
    if (!optional_out.has_value())
      out.fill_(0);
rusty1s's avatar
rusty1s committed
260
    return out;
rusty1s's avatar
rusty1s committed
261
  }
rusty1s's avatar
rusty1s committed
262

rusty1s's avatar
rusty1s committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
  auto N = src.size(dim) * (indptr.numel() / indptr.size(-1));
  auto K = src.numel() / N;
  auto E = out.size(dim);

  auto indptr_info = at::cuda::detail::getTensorInfo<int64_t, int>(indptr);
  auto stream = at::cuda::getCurrentCUDAStream();
  AT_DISPATCH_ALL_TYPES(src.scalar_type(), "gather_csr_kernel", [&] {
    auto src_data = src.data_ptr<scalar_t>();
    auto out_data = out.data_ptr<scalar_t>();

    if (K == 1)
      gather_csr_kernel<scalar_t, 4><<<BLOCKS(1, 4 * N), THREADS, 0, stream>>>(
          src_data, indptr_info, out_data, N, E);
    else
      gather_csr_broadcast_kernel<scalar_t>
          <<<BLOCKS(1, N * K), THREADS, 0, stream>>>(src_data, indptr_info,
                                                     out_data, N, K, E);
  });

  return out;
}