"mmdet/api/train.py" did not exist on "904d875acdbce9c0ee06b37a19b6fd7141f51659"
__init__.py 2.81 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
import torch
from torch.autograd import Variable

rusty1s's avatar
rusty1s committed
4
5
6
7
8
from .scatter import scatter
from .utils import gen_output


def scatter_add_(output, index, input, dim=0):
rusty1s's avatar
rusty1s committed
9
10
    scatter('add', dim, output, index, input)
    return output
rusty1s's avatar
rusty1s committed
11
12
13
14
15
16
17
18


def scatter_add(index, input, dim=0, max_index=None, fill_value=0):
    output = gen_output(index, input, dim, max_index, fill_value)
    return scatter_add_(output, index, input, dim)


def scatter_sub_(output, index, input, dim=0):
rusty1s's avatar
rusty1s committed
19
20
    scatter('sub', dim, output, index, input)
    return output
rusty1s's avatar
rusty1s committed
21
22
23
24
25
26
27
28


def scatter_sub(index, input, dim=0, max_index=None, fill_value=0):
    output = gen_output(index, input, dim, max_index, fill_value)
    return scatter_sub_(output, index, input, dim)


def scatter_mul_(output, index, input, dim=0):
rusty1s's avatar
rusty1s committed
29
30
    scatter('mul', dim, output, index, input)
    return output
rusty1s's avatar
rusty1s committed
31
32
33
34
35
36
37
38


def scatter_mul(index, input, dim=0, max_index=None, fill_value=1):
    output = gen_output(index, input, dim, max_index, fill_value)
    return scatter_mul_(output, index, input, dim)


def scatter_div_(output, index, input, dim=0):
rusty1s's avatar
rusty1s committed
39
40
    scatter('div', dim, output, index, input)
    return output
rusty1s's avatar
rusty1s committed
41
42
43
44


def scatter_div(index, input, dim=0, max_index=None, fill_value=1):
    output = gen_output(index, input, dim, max_index, fill_value)
rusty1s's avatar
rusty1s committed
45
46
47
48
    scatter_div_(output, index, input, dim)


def scatter_mean_(output, index, input, dim=0):
rusty1s's avatar
rusty1s committed
49
50
51
52
    if torch.is_tensor(input):
        output_count = output.new(output.size()).fill_(0)
    else:
        output_count = Variable(output.data.new(output.size()).fill_(0))
rusty1s's avatar
rusty1s committed
53
    scatter('mean', dim, output, index, input, output_count)
rusty1s's avatar
rusty1s committed
54
    output_count[output_count == 0] = 1
rusty1s's avatar
rusty1s committed
55
56
57
58
    output /= output_count
    return output


rusty1s's avatar
cleaner  
rusty1s committed
59
def scatter_mean(index, input, dim=0, max_index=None, fill_value=0):
rusty1s's avatar
rusty1s committed
60
61
    output = gen_output(index, input, dim, max_index, fill_value)
    return scatter_mean_(output, index, input, dim)
rusty1s's avatar
rusty1s committed
62
63


rusty1s's avatar
rusty1s committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
def scatter_max_(output, index, input, dim=0):
    output_index = index.new(output.size()).fill_(-1)
    scatter('max', dim, output, index, input, output_index)
    return output, output_index


def scatter_max(index, input, dim=0, max_index=None, fill_value=0):
    output = gen_output(index, input, dim, max_index, fill_value)
    return scatter_max_(output, index, input, dim)


def scatter_min_(output, index, input, dim=0):
    output_index = index.new(output.size()).fill_(-1)
    scatter('min', dim, output, index, input, output_index)
    return output, output_index


def scatter_min(index, input, dim=0, max_index=None, fill_value=0):
    output = gen_output(index, input, dim, max_index, fill_value)
    return scatter_min_(output, index, input, dim)


rusty1s's avatar
rusty1s committed
86
87
__all__ = [
    'scatter_add_', 'scatter_add', 'scatter_sub_', 'scatter_sub',
rusty1s's avatar
rusty1s committed
88
    'scatter_mul_', 'scatter_mul', 'scatter_div_', 'scatter_div',
rusty1s's avatar
rusty1s committed
89
90
    'scatter_mean_', 'scatter_mean', 'scatter_max_', 'scatter_max',
    'scatter_min_', 'scatter_min'
rusty1s's avatar
rusty1s committed
91
]